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Abstract

A proper representation of the uncertainty involved in a prediction is an important

prerequisite for the acceptance of machine learning and decision support technology in

safety-critical application domains such as medical diagnosis. Despite the existence of

various probabilistic approaches in these fields, there is arguably no method that is able

to distinguish between two very different sources of uncertainty: aleatoric uncertainty,

which is due to statistical variability and effects that are inherently random, and

epistemic uncertainty which is caused by a lack of knowledge. In this paper, we

propose a method for binary classification that does not only produce a prediction of

the class of a query instance but also a quantification of the two aforementioned sources

of uncertainty. Despite being grounded in probability and statistics, the method is

formalized within the framework of fuzzy preference relations. The usefulness and

reasonableness of our approach is confirmed on a suitable data set with information

about patients suffering from chest pain.

1 Introduction

Intelligent systems play an increasingly important role in the medical domain, where they

are typically used for the purpose of decision support. This includes the application of

machine learning methods for predictive modeling, that is, the data-driven construction

of models that can be used for predictive purposes [22]. As a simple example, imagine

a classifier system that predicts a diagnosis based on symptoms and different types of
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patient data. Apart from making predictions, the construction of such models may serve

other goals, too. In particular, a model is often useful to gain further insight into the

dependencies between predictors and the target variable, and thus may hint at hitherto

unknown or incompletely known causal relationships.

Learning from data is inseparably connected with uncertainty. This is largely due to the

fact that learning, understood as generalizing beyond a finite set of observed data, is

necessarily based on a process of induction. Inductive inference replaces specific obser-

vations by general models of the data-generating process, but these models are always

hypothetical and, therefore, afflicted with uncertainty. Indeed, observed data can gener-

ally be explained by more than one candidate theory, which means that one can never be

sure of the truth of a particular model (and the predictions it implies). Apart from the

uncertainty inherent in inductive inference, additional sources of uncertainty may exist,

including erroneous data, incorrect model assumptions, or simply random effects.

Needless to say, a trustworthy representation of uncertainty is desirable and should be

considered as a key feature of a machine learning method, all the more in safety-critical

application domains such as medicine [3, 20, 25, 14]. Traditionally, all sorts of uncertainty

in classification, like in data analysis in general, have been modeled in a probabilistic

way, and indeed, probability theory has always been perceived as the ultimate tool for

uncertainty handling in fields like statistics and machine learning.

Without questioning the probabilistic approach in general, we argue that conventional

methods fail to distinguish two inherently different sources of uncertainty, which are often

referred to as aleatoric and epistemic uncertainty [12]. Roughly speaking, aleatoric (aka

statistical) uncertainty refers to the notion of randomness, that is, the variability in the

outcome of an experiment which is due to inherently random effects. As opposed to this,

epistemic (aka systematic) uncertainty refers to uncertainty caused by a lack of knowledge,

i.e., it refers to the epistemic state of the decision maker.

The prototypical example of aleatoric uncertainty is coin flipping: The data-generating

process in this type of experiment has a stochastic component that cannot be reduced by

whatsoever additional information. Consequently, even the best model of this process will

only be able to provide probabilities for the two possible outcomes, heads and tails, but

no definite answer. Epistemic uncertainty, on the other hand, can in principle be reduced

on the basis of additional information. For example, as long as nothing relevant is known

about a patient, a medical doctor will be completely ignorant about the true diagnosis.

Gathering more and more information in the form of medical tests etc., this ignorance will

disappear step by step.

In other words, epistemic uncertainty refers to the reducible part of the (total) uncertainty,

whereas aleatoric uncertainty refers to the non-reducible part. From a knowledge repre-

sentation and decision making point of view, a distinction between these two sources of



uncertainty is arguably important, especially in cases where the ultimate decision can be

delayed. A medical doctor, for example, who knows that his uncertainty about the illness

of a patient is caused by a lack of knowledge about the disease in question, may decide to

consult the literature or ask a colleague before making a decision.

In this paper, we introduce a new approach to reliable classification, in which the afore-

mentioned sources of uncertainty are carefully distinguished. Moreover, we illustrate the

usefulness of this approach in the context of medical decision making. Before presenting

details of our method in Section 4, we elaborate on the important role of model assumptions

and background knowledge in learning from data (Section 2) and propose a formalization

of the classification problem within the framework of fuzzy preference relations (Section 3).

Section 5 is devoted to a case study, in which our approach is applied to a medical data set

with information about patients suffering from chest pain. Additional experiments with

benchmark data are presented in Section 6, before concluding the paper in Section 7.

2 Knowledge and Data

The problem we are tackling is to quantify aleatoric and epistemic uncertainty in the

context of learning from data. In this context, it is natural to assume that epistemic

uncertainty will strongly depend on the amount of data seen so far: the larger the number

of observations, the less ignorant we will be when having to make a new prediction.

Although this is true in general, it is important to realize that the data is only one source

of information. Another important source of information is the background knowledge

about the dependency to be learned. In statistics and machine learning, this background

knowledge is represented in terms of model assumptions, that is, through the specification

of the underlying hypothesis (model) space. This specification always comes with an

inductive bias, which is indeed essential for learning from data. In fact, without any bias,

learning would be impossible [18].

Both aleatoric and epistemic uncertainty (ignorance) depend on the way in which back-

ground knowledge and data interact with each other. Roughly speaking, the stronger the

background knowledge, the less data is needed to resolve ignorance. In the extreme case,

the true model is already known, and data is completely superfluous. Normally, however,

background knowledge is specified by assuming a certain type of model, for example a

linear relationship. Then, all else (namely the data) being equal, the degree of ignorance

(epistemic uncertainty) depends on how flexible the corresponding model class is. Infor-

mally speaking, the more restrictive the model assumptions are, the smaller the level of

ignorance will be.

This is illustrated in Figure 1, where a class prediction is requested for the point marked

by a cross. Assuming that the two classes, positive (black) and negative (white), can be
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Figure 1: All linear models consistent with the data, like the one shown as a solid line,
will predict the query instance as negative (white). A richer model space, however, may
include both models voting for positive (like the one shown as dashed line) as well as for
negative.

separated by a linear decision boundary, the case is quite clear: All consistent models,

i.e., models correctly classifying the training data (like the one shown as a solid line),

will predict the negative class. However, being less sure about the shape of the decision

boundary and, therefore, expanding the model space by allowing also non-linear (e.g.

quadratic) discriminant functions, the level of ignorance increases. In fact, under this

assumption, the class of consistent models will not vote unanimously: there are models

predicting the positive (like the one shown as a dashed line) as well as models predicting

the negative class (like the linear model).

At this point, two further remarks are indicated. First, the background knowledge is

normally not limited to assumptions about the shape of the decision boundary, as might be

suggested by the previous example. Instead, it will also comprise other assumptions about

the data-generating process, for example assumptions about the statistical distribution of

error terms. Second, our approach takes the correctness of the background knowledge

for granted. In other words, our predictions are conditioned on the underlying model

assumptions. Informally, the question we seek to answer can thus be summarized as

follows: Looking at the data from a point of view that is biased by our model assumptions,

what can we reliably say about the class of the query instance under consideration?

3 Classification as Fuzzy Preference Modeling

Classification can be seen as a decision making problem: Given a new query instance to

be classified, a decision in favor of one class has to made against the background of the

information at hand (which, as discussed above, essentially consists of data and background



knowledge). Indeed, the classification problem is often formalized within the framework

of Bayesian decision theory [4].

For the reasons explained in the following, we seek to connect the classification problem

to another type of decision-theoretic framework, namely fuzzy preference modeling [10].

From the discussion so far, it is clear that aleatoric and epistemic uncertainty should no be

considered as bivalent notions: Normally, it does not make sense to categorize a situation

as either uncertain or not uncertain, or a decision maker as being either ignorant or not

ignorant. Instead, it makes sense to say that a situation is uncertain to some degree, or that

a decision maker is ignorant to some extent. For example, given perfect knowledge about

the probability of a binary event, the aleatoric uncertainty of the decision (prediction)

should be highest for the probability 1/2 and become smaller for probabilities close to 0

or close to 1. Likewise, the degree of ignorance will depend on the abundance of data, but

will not suddenly disappear by adding a single observation.

Our goal, therefore, is to model aleatoric and epistemic uncertainty as gradual notions.

As mentioned above, we therefore establish a connection to the field of fuzzy logic or,

more specifically, fuzzy preference modeling. In fuzzy preference modeling, the point of

departure is a preference structure (P, I,J ), consisting of the following binary relations

on the set A of decision alternatives:

– a strict preference relation P : A×A → [0, 1],

– an indifference relation I : A×A → [0, 1],

– an incomparability relation J : A×A → [0, 1].

These relations are “valued” or “fuzzy” in the sense of assuming values in [0, 1] instead

of {0, 1}. That is, for two decision alternatives A,A′ ∈ A, the former can be preferred

to the latter to a certain degree P(A,A′) ∈ [0, 1]. Likewise, indifference I(A,A′) and

incomparability J (A,A′) are both a matter of degree. Nevertheless, the relations are

supposed to satisfy certain properties; for example, I and J should be symmetric. Besides,

for all A,A′ ∈ A,

P(A,A′) + P(A′, A) + I(A,A′) + J (A,A′) = 1 (1)

The indifference and incomparability relation are especially interesting for us, since a

direct correspondence can be established between the concepts of indifference and aleatoric

uncertainty on the one side and incomparability and epistemic uncertainty on the other

side. In fact, the the sum I(A,A′) + J (A,A′), which corresponds to the symmetric part

of (1), can be seen as the degree to which A and A′ cannot be distinguished, albeit for

different reasons: I(A,A′) is the degree to which A and A′ are inherently equal, whereas



J (A,A′) is the degree to which they (yet) cannot be compared. This fits quite nicely

with our view of aleatoric uncertainty as the irreducible and epistemic uncertainty as the

reducible part of the uncertainty.

In Section 4, we shall propose a formal approach to classification in which predictions

are represented in terms of fuzzy preferences, with indifference re-interpreted as aleatoric

uncertainty and incomparability re-interpreted as epistemic uncertainty. Thus, given two

classes, positive (⊕) and negative (	), a prediction will be given in the form of a 4-tuple

(
p⊕, p	, ua, ue

)
=
(
P(⊕,	), P(	,⊕), I(⊕,	), J (⊕,	)

)
, (2)

where p⊕ is interpreted as the strict preference in favor of predicting the positive class, p	

the strict preference in favor of the negative class, ua as the degree of aleatoric uncertainty,

and ue as the degree of epistemic uncertainty.

Thus, we restrict ourselves to the case of two classes (alternatives) in this paper. Roughly

speaking, our approach allows for producing a single entry in the relations defining a fuzzy

preference structure. An obvious extension to the multi-class case is to apply the method

for each pair of classes. However, this extension as well as the question of how to exploit a

preference structure (P, I,J ) for different decision making purposes are beyond the scope

of this paper.

4 A Formal Approach

Our point of departure is a binary classification problem with classes Y = {⊕,	} and

instance space X . Besides, we assume to be given a class M of candidate models, where

each M ∈M is a probabilistic classifier. Thus, a model M is an X → [0, 1] mapping such

that, for each instance x ∈ X , the value M(x) is the probability that the class of x is

positive.

Suppose to be given a set of training data (observations) D = {(xn, yn)}Nn=1 ∈ (X × Y)N

(normally assumed to be independent and identically distributed) and a new query instance

x0 for which a prediction is sought. The method we propose is inductive in the sense that

we generally learn global models from the data, but transductive (and “lazy”) in the sense

that the main inference step is specifically tailored for the query instance x0.

4.1 Bayesian Inference

Adopting a Bayesian perspective, we can consider the posterior distribution on the model

space:

P(M | D) ∝ P(M) ·P(D |M),



where P(M) is the prior probability of the model M ∈M, P(D |M) is the probability of

the data given M , and P(M | D) is the posterior probability of M . Often, the specification

of a suitable prior distribution is difficult, and hence the likelihood function

L(M) = P(D |M)

is considered instead. This is essentially equivalent to using a uniform prior and leads to

the posterior P(M | D) ∝ L(M).

In proper Bayesian inference, a prediction for x0 is obtained through model averaging :

P(⊕ |x0) =

∫
M
M(x0) dP(M | D) (3)

Thus, the predicted probability of the positive class is the expected prediction M(x0),

where the expectation over the model is taken with respect to the posterior P(M | D).

Correspondingly, the probability of the negative class is given by

P(	 |x0) = 1−P(⊕ |x0). (4)

In this type of inference, aleatoric and epistemic uncertainty is not distinguished or, more

specifically, epistemic uncertainty is “averaged out”. Consider again coin flipping as an

example, and let the model class be given by M = {Mα | 0 ≤ α ≤ 1}, where Mα is modeling

a biased coin landing heads (⊕) with a probability of α and tails (	) with a probability

of 1 − α. According to (3), we derive a probability of 1/2 for ⊕ and 	, regardless of

whether the (posterior) distribution on M is given by the uniform distribution (all coins are

equally probable, i.e., the case of complete ignorance) or the one-point measure assigning

probability 1 to M1/2 (the coin is known to be fair with complete certainty).

4.2 Plausibility and Necessity of Events

The above problem is related the fact that ignorance cannot be represented in terms of

a (standard) probability measure. This problem, in turn, is rooted in the normalization

constraint (4) or, more generally, the self-duality of a probability measure:

P(A) = 1−P(A), (5)

where A is an event and A the complement of A. Thus, assigning a certain probability mass

to A (i.e., supporting A) can only be done by removing this mass from A. Consequently,

it is not possible to say that A is plausible without saying that A is implausible. Roughly

speaking, the probabilistic approach assumes a “constant” amount of knowledge, namely

a single unit mass. Although this mass can be distributed to different events, the total



mass remains the same.

To circumvent this limitation, we refer to the more flexible framework of possibility theory,

in which uncertainty is modeled in terms of two measures instead of a single one [9].

These two measures, which are called, respectively, possibility (plausibility) measure Π

and necessity measure N , are dual in the sense that

Π(A) = 1−N(A). (6)

Thus, an event A is plausible insofar as the complement of A is not necessary. Or, stated

differently, an event A necessarily occurs if the complement of A is not possible. These two

measures allow for expressing ignorance in a proper way, mainly because A can be declared

plausible without declaring A implausible. In particular, Π(A) ≡ 1 models complete

ignorance: Everything is completely plausible, and hence nothing is necessary (N(A) =

1−Π(A) = 0 for all A).

Comparing (5) and (6), it becomes obvious that a probability measure is playing both roles

simultaneously, namely the role of the possibility and the role of the necessity measure.

This explains why it is more constrained and hence less expressive.

4.3 From Plausibility to Aleatoric and Epistemic Uncertainty

In our case, the underlying space Y has only two elements, which are hence complementary

to each other. Thus,

π(⊕) = Π({⊕}) = 1−N({	}),

π(	) = Π({	}) = 1−N({⊕}),

where π(⊕) denotes the plausibility of ⊕ (given the query x0) and, correspondingly, π(	)

the plausibility of 	. Now, suppose the two plausibility degrees to be given, and recall

that 0 ≤ π(⊕), π(⊕) ≤ 1 without any further constraints. We then define the degree of

epistemic uncertainty as

ue = min
(
π(⊕), π(	)

)
,

that is, the degree to which both ⊕ and 	 are plausible (the minimum plays the role of a

generalized conjunction [13]). Likewise, we define the degree of aleatoric uncertainty as

ua = min
(
1− π(⊕), 1− π(	)

)
= min

(
N({	}), N({⊕})

)
= 1−max

(
π(⊕), π(	)

)
,



that is, the degree to which neither ⊕ nor 	 is plausible. These definitions are completely

in agreement with the standard way of deriving the degrees of indifference and ignorance

from the degrees of weak preference in fuzzy preference modeling [10].

Note that

ua + ue = 1−max
(
π(⊕), π(	)

)
+ min

(
π(⊕), π(	)

)
≤ 1.

Thus, the total uncertainty (aleatoric + epistemic) is upper-bounded by 1. We assign the

difference 1−(ua+ue) as strict preference to the class with the higher plausibility, thereby

satisfying the normalization condition (1).

4.4 Modeling Class Plausibility

An important question has been left open so far, namely how to define the plausibilities

π(⊕) and π(	) of the positive and negative class, respectively. To this end, we exploit the

posterior model distribution (likelihood function), just like in Bayesian inference. However,

for the reasons explained above, we avoid averaging.

Instead, we define the plausibility of the positive class as follows:

π(⊕) = sup
M∈M

min
(
πM(M), f(M(x0))

)
, (7)

where f(a) = max(2a− 1, 0) is the membership function of the fuzzy set of high probabili-

ties, and πM is a possibility distribution on the model space. Recalling that the supremum

operator plays the role of a generalized existential quantifier, the expression (7) can be

read as follows: The class ⊕ is plausible insofar there exists a model M that is plausible

and that assigns a high probability to ⊕. Analogously, we define the plausibility for 	:

π(	) = sup
M∈M

min
(
πM(M), f(1−M(x0))

)
. (8)

The possibility distribution πM on the model space is essentially a normalized probability

or likelihood [23, 24]. In the case of likelihood inference, we define it as

πM(M) =
L(M)

L(Mml)
,

where Mml ∈ M is the maximum likelihood (ML) estimation on the data D. Thus, the

plausibility of a model is in direct proportion to its likelihood, with the ML estimation

having the highest plausibility of 1; for a deeper analysis of the idea of possibility as

normalized likelihood, see [8, 7]. Likewise, in the Bayesian case, we can normalize the

posterior probabilities:

πM(M) =
P(M | D)

supM∗∈MP(M∗ | D)
.



Although algorithmic aspects are not in the focus of this paper, it is worth to mention

that the computation of (7) (and likewise of (8)) may become rather complex. In fact,

the computation of the supremum comes down to solving an optimization problem, the

complexity of which strongly depends on the model space M.

Often, a local search in the model space M will be appropriate, at least of πM is unimodal:

Starting the search at M = Mml (or any other model with highest plausibility), we have

πM(M) = 1 but probably f(M(x0)) < 1; thus, the minimum will be determined by the

second argument, f(M(x0)). In order to increase the minimum, one should move into the

direction of models M that assign a higher probability to ⊕. This way, f(M(x0)) will

become larger while πM(M) will become smaller. The optimal solution achieves a com-

promise between model and class plausibility and (in the continuous case) is characterized

by the equality πM(M) = f(M(x0)).

4.5 Summary of the Approach

Summarizing the steps described above, our approach (based on likelihood inference) can

be summarized as follows. For a given data set D and a query instance x0, it computes a

quadruple (2) with

π(⊕) = sup
M∈M

min

(
L(M)

L(Mml)
, max

(
2M(x0)− 1, 0

))
,

π(	) = sup
M∈M

min

(
L(M)

L(Mml)
, max

(
1− 2M(x0)), 0

))
,

ua = min
(

1− π(⊕), 1− π(	)
)
,

ue = min
(
π(⊕), π(	)

)
,

p⊕ =


1− (ua + ue) π(⊕) > π(	)

1−(ua+ue)
2 π(⊕) = π(	)

0 π(⊕) < π(	)

,

p	 = 1− (p⊕ + ua + ue).

4.6 Special Cases

The above considerations already reveal that the class plausibilities will strongly depend

on the “peakedness” of πM. If this function has a strong peak, suggesting a high certainty

about the true model (e.g., because D consists of many observations), πM will quickly

drop when moving away from this model. Thus, it will not be possible to achieve a value



significantly better than f(M(x0)) in the case of ⊕ and of f(1−M(x0)) in the case of 	.

Consequently, not both plausibility degrees π(⊕) and π(	) can be large at the same time,

which in turn means that there is a low level of epistemic uncertainty.

As a concrete example, consider the case where a probability distribution

(α, 1− α) = (P(⊕ |x0),P(	 |x0))

is known with certainty; the case of fair coin flipping, for instance, corresponds to α = 1/2.

Since πM(M) is 1 for the model prescribing these probabilities and 0 otherwise, (7) and

(8) are given, respectively, by f(α) and f(1−α). This implies that either π(⊕) or π(	) (or

both) are 0. Consequently, there is no epistemic uncertainty (ue = 0), while the aleatoric

uncertainty is given by ua = min(2α, 2(1− α)). Thus, the aleatoric uncertainty is highest

(namely 1) for α = 1/2 and lowest (namely 0) for α ∈ {0, 1}. This is in perfect agreement

with our expectations.

The other extreme case corresponds to πM ≡ 1, where all models are considered as equally

plausible; this case is obtained, for example, from a flat likelihood and a uniform posterior

on M. Then, the first argument of the minimum in (7) and (8) is always 1, which essentially

means that the model can be chosen freely. Consequently, π(⊕) = π(	) = 1. This

corresponds to the case of complete ignorance or, say, full epistemic uncertainty (ue = 1).

The last example also makes clear that our approach can be seen as a generalization

of standard version space learning [17], in which the class Mcons ⊆ M of all consistent

models is maintained. Standard version space learning considers a noise-free setting, in

which models are binary classifiers (X → {0, 1} mappings), and a model is consistent if it

does not make any mistake on the examples seen so far. This setting can be modeled in

terms of {0, 1}-valued possibility distributions, in which case the supremum in (7) and (8)

becomes a real existential quantifier: π(⊕) = 1 if there exists a model M ∈ Mcons that

predicts ⊕ for x0 and π(⊕) = 0 otherwise.

4.7 An Illustration

As a more concrete example, consider a sequence of Bernoulli experiments: A coin with a

fixed but unknown probability p ∈ [0, 1] for landing heads is thrown repeatedly, and after

each trial, the problem is to predict the outcome of the next trial. Formally, the model

space is given by M = {Mp | 0 ≤ p ≤ 1}, where Mp = Mp(x0) is the model that produces

outcome ⊕ (heads) with probability p and 	 (tails) with probability 1− p.1

Needless to say, the prediction of the next outcome is afflicted with uncertainty. In the

beginning, this uncertainty is mainly of epistemic nature, since nothing is known about

1Although we do not need an instance space in this example, one may formally define a space X = {x0}
consisting of a single instance which is repeatedly chosen with probability 1 (and can hence be ignored).



the parameter p. In the course of time, however, more and more is learned about this

parameter, so the epistemic uncertainty becomes smaller and smaller; in the limit of an

infinite sample size, it will vanish completely, since p can be estimated (based on relative

frequencies) to an arbitrary degree of precision. The remaining uncertainty, then, is purely

aleatoric.
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Figure 2: Sequential coin flipping example: Epistemic and aleatoric uncertainty for differ-
ent values of p as a function of the number of coin flips.



More specifically, after each trial, we applied our approach with the likelihood function

L(Mp) =

(
N

K

)
· pK · (1− p)N−K ,

where N is the number of trials and K the number of heads so far. Figure 2 plots the

expected degree of the two types of uncertainty (approximated by the average over a large

number of repetitions) as a function of the number of trials. These results obviously con-

firm our expectations. Qualitatively, the curves are similar for different values of p. Yet,

the closer p is to 1/2, the slower the epistemic uncertainty disappears, and the higher

the level of aleatoric uncertainty that eventually remains. The case p = 1/2 is especially

noticeable, as it corresponds to “complete uncertainty”. Being fully epistemic in the begin-

ning, the uncertainty becomes entirely aleatoric in the limit N → ∞. More importantly,

however, the total amount of uncertainty is not reduced (the curve for aleatoric uncer-

tainty slowly converges to 1): Even precise knowledge about p does not help in predicting

the outcome of the next trial. Obviously, the situation is different for parameters p 6= 1/2,

since in this case, even approximate knowledge of p will help to do better than random

guessing.

5 Case Study

In this section, we present a series of experimental studies that mainly serve two purposes:

First, we seek to show that our approach is able to capture uncertainty in classification

in a meaningful way; as will be seen shortly, the data set to be used in the experiments is

especially suitable in this regard. Second, we like to highlight again the relevance of our

method for the practical problem of medical decision making.

5.1 Data Set

The data set has originally been used to evaluate the diagnostic accuracy of symptoms

and signs for coronary heart disease (CHD) in patients presenting with chest pain in pri-

mary care (PC). Chest pain is a common complaint in primary care, with CHD being

the most concerning of many potential causes. Based on the medical history and physical

examination, GPs have to classify patients into two classes: patients in whom an under-

lying CHD can be safely ruled out and patients in whom chest pain is probable caused by

CHD. Needless to say, a wrong decision may have serious consequences. All the more it is

important to incorporate measures of reliability into computer systems assisting the GP.

Design and conduct of the study were described elsewhere [5].

Briefly, 74 general practitioners (GP) recruited consecutively patients aged ≥ 35 who



presented with chest pain as primary or secondary complaint. GPs took a standardized

history and performed a physical examination. Patients and GPs were contacted six

weeks and six months after the consultation. All relevant information about course of

chest pain, diagnostic procedures and treatments had been gathered during six months.

An independent expert panel of one cardiologist, one GP and one research staff member

reviewed each patient’s data and established the reference diagnosis by deciding whether

or not CHD was the underlying reason of chest pain. This reference diagnosis hence can

be taken as a kind of ground-truth.2

The data set is comprised of 1199 (135 CHD and 1064 non-CHD) patients described by

six binary attributes:

• patient assumes pain is of cardiac origin

• pain not reproducible by palpation

• known clinical vascular disease

• age gender compound

• pain depends on exercise

• reference diagnosis

The first five attributes have been found to be the most predictive ones among all those

collected in the full survey [6]. For our purpose, the data set is especially interesting

because, in addition to the patient information and the classification, it contains a subjec-

tive value of the GP’s uncertainty about the classification: The GP was asked to assign

a probability for CHD being the underlying reason. Thus, values close to zero or close to

one indicate a high confidence of the GP, whereas values close to 0.5 indicate a high level

of uncertainty.

5.2 Classifiers

Having in mind our discussion about the influence of background knowledge (Section 2),

we decided to make use of two classifiers. The first one is standard logistic regression

(LR), which is a quite common approach in medical data analysis in general and was also

used for analyzing our data set in [5]. Since this classifier fits a linear decision boundary

in the instance space, it is rather restrictive and makes strong model assumptions. In

particular, it makes a strong independence assumption: The influence of each attribute

(on the probability of CHD as underlying cause ⊕, i.e., a CHD case) is independent of the

values of all other attributes.
2Needless to say, one cannot entirely exclude the possibility of mistakes even for this diagnosis.



The second classifier is more flexible and simply estimates the probability of ⊕ for each

possible patient (based on relative frequencies). This is possible due to the quite limited

size of the instance space X = {0, 1}5: Five binary attributes give rise to only 32 pos-

sible combinations x = (x1, . . . , x5). Since this classifier simply tabulates the estimated

probabilities P(⊕ |x) for each x ∈ X , we call is “table classifier” (TC).

Prior to elaborating on the representation of uncertainty, which is our main target, we

compared the predictive accuracy of the original classifiers with our “reliable variants”.

The reason is to make sure that an improved representation of uncertainty in classification

does not come at the price of a drop in predictive accuracy.

Given a set of training data and a new query instance, our approach solves the optimization

problems (7-8) defining the plausibility degrees for the positive and the negative class using

the well-known CMAES method [11]. Based on these degrees, both types of uncertainty

(aleatoric and epistemic) are calculated, as well as the degrees of strict preference. A

prediction is then made on the basis of the latter, that is, in favor of the class with the

higher degree of strict preference. In terms of computational complexity, this approach is

quite efficient: the time needed to make a single prediction is 1.52± 0.14 seconds.

LR Reliable LR TC Reliable TC

0.921± 0.025 0.921± 0.025 0.916± 0.034 0.915± 0.031

Table 1: Mean classification rate ± standard deviation for different classifiers.

The results of a 10-fold cross validation (repeated 5 times and averaged) are summarized

in Table 1 and Figure 3. As can be seen, there are essentially no differences between

the original classifiers and their respective reliable variants. In other words, extracting

different types of uncertainty from a classifier and basing a prediction on what remains,

namely the strict preferences, does apparently not harm the predictive accuracy.

5.3 Evolution of Aleatoric and Epistemic Uncertainty

In our model, epistemic uncertainty is expected to decrease with an increasing sample

size, which can be seen as a measure of the GP’s “experience” (the number of patients

seen so far). As opposed to this, aleatoric uncertainty will normally not vanish completely,

unless a perfect classifier with zero prediction error can be learned. This, however, is only

possible in a noise-free setting (and provided the model assumptions are correct).

In order to verify these expectations, we generated a series of training data sets of increas-

ing size. For each sample size, the classifiers were trained and used to predict the two

types of uncertainty (aleatoric and epistemic) for each instance in the remaining test data

(i.e., the data not used for training so far).

Figures 4 and 5 illustrate the results in terms of the average level of epistemic and aleatoric



0.
85

0.
90

0.
95

Logistic Reliable Logistic Table Reliable Table

Accuracy Comparison

Figure 3: Accuracy (classification rate) of the original classifiers compared to the respective
reliable variant.

uncertainty as a function of sample size. As expected, epistemic uncertainty decreases

with an increasing number of patients, while aleatoric uncertainty slightly increases in

the beginning but then remains at a level of about 0.1. Interestingly, but in complete

agreement with our expectation, the level of epistemic uncertainty is much higher for the

table classifier than for logistic regression, reflecting the fact that the latter starts with

more background knowledge than the former.

5.4 Comparing Predicted and Reported Uncertainty

In another experiment, we analyzed to what extent the uncertainty “predicted” by our

model is in agreement with the GP’s level of uncertainty in a classification. In fact, a

positive dependency between the model’s uncertainty and the GP’s uncertainty would

be a strong indicator of the fact that the former captures uncertainty in a reasonable

and realistic way. It would also be a prerequisite for using our model in order to select

uncertain cases in an automatic way.
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Figure 4: Aleatoric and epistemic uncertainty for the table classifier as a function of sample
size.

One should note, however, that a strong dependency of that kind should not necessarily

be expected, even if our model is quantifying uncertainty in a proper way. First, the

model assumptions underlying our classifiers (LR and TC) will probably not fully fit the

background knowledge and decision procedure of the GP. Our classifier assumes a model

with only five attributes of a patient and is trained on a subsample of the patients in

this study. The physicians, on the other hand, are “trained” by their own experience and

education. Moreover, they will probably use more information about a patient than our

five attributes.

Second, the types of uncertainty are not exactly the same. As already explained earlier,

the GPs were not directly asked for their uncertainty about a diagnosis, let alone to

differentiate between aleatoric and epistemic uncertainty. Instead, they were asked to

provide the probability pCHD that a patient x0 is a CHD case. Therefore, we approximated

the GPs subjective uncertainty using the following transformation:

UGP (x0) = 1− |pCHD(x0)− 0.5|
0.5

In order to quantify the dependency between the GP’s uncertainty and our model’s un-
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Figure 5: Aleatoric and epistemic uncertainty for logistic regression as a function of sample
size.

certainty, we calculated the (Spearman) rank correlation between UGP (x0) and the total

uncertainty ua(x0) + ue(x0), i.e., the sum of the aleatoric and epistemic uncertainty pre-

dicted by our model. Although the correlation is not perfect, it is significantly positive,

with a value of more than 0.5 for logistic regression and 0.43 for the table classifier. This

clearly shows that the uncertainty quantified by our approach is in well agreement with

the subjective uncertainty as perceived by the physicians. Since the correlation is a bit

higher for logistic regression than for the table classifier, one might be tempted to believe

that the physicians’ way of reasoning is closer to the simple model assuming independence

of the predictor variables than to the more complex model that looks at all attributes

simultaneously. Yet, given the small difference in terms of correlations and keeping in

mind the factors that compromise full comparability, this conjecture is admittedly very

speculative.

5.5 Accuracy-Rejection Curves

In the previous experiment, we compared the uncertainty as quantified by our model with

the subjective uncertainty of the medical expert. The goal of the experiment presented



in this section is to validate the reasonableness of our approach in a somewhat more

“objective” way. To this end, we compute so-called accuracy-rejection curves [19]. Roughly

speaking, the idea is that, if u(x0) is a reliable measure of the uncertainty involved in the

classification of an instance x0, then this value should correlate with the probability to

make a correct decision. Or, stated differently, when being allowed to abstain from the

classification of all instances whose uncertainty exceeds a certain threshold (u(x0) > t), the

classification accuracy should improve on the remaining instances. An accuracy-rejection

curve is obtained by varying the rejection-threshold; it plots the classification accuracy

(on the non-rejected instances) as a function of the reject rate (percentage of rejected

instances).

In this experiment, we based the reject decision on the overall uncertainty u(x0) = ua(x0)+

ue(x0) of the classifier. In the case of the GPs, we again used UGP as their measure of

uncertainty. In order to produce the accuracy-rejection curves, we run a 5-times 10-fold

cross-validation experiment to obtain predictions and their corresponding uncertainties.
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Figure 6: Accuracy-Rejection curves for (a) logistic regression, (b) table classifier and (c)
the GPs.

The expected monotone dependency between reject rate and classification accuracy is

confirmed by the results shown in Figure 6, not only for the classifiers but also for the

GPs. Thus, although the overall accuracy of the GPs is lower, they seem to be well aware



of their uncertainty, which is a quite interesting finding. More importantly, however, the

same can be observed for both classifiers, showing that the uncertainty produced by our

model is indeed a reliable indicator of the uncertainty involved in a classification decision.

5.6 Statistics for Different Patient Groups

As mentioned earlier, the instance space consists of only 32 different patients or, more

specifically, patient representations (patient groups) in this study. Table 2 summarizes

some properties of these patient groups. From this table, several interesting observations

can be made, including the following:

• Epistemic uncertainty is supposed to be higher for smaller patient groups. And

indeed, the (Spearman) correlation between epistemic uncertainty and the relative

group size is −0.91 in the case of the table classifier. Despite being still negative, the

absolute correlation is much smaller for logistic regression (−0.15), a result which is

again expected in light of our discussion about model assumptions and the incorpo-

ration of background knowledge.

• Misclassifications are expected to happen more often for patients with a high overall

uncertainty. The corresponding correlation for the physicians, calculated for the

mean uncertainty of the physicians and their error rate, is 0.67. For the classifiers,

this correlation is slightly weaker (0.51 for logistic regression and 0.61 for the table

classifier).

6 Experiments on Benchmark Data

In order to broaden our analysis, we conducted additional experiments with standard (bi-

nary classification) benchmark data sets from the UCI [1] and the StatLib [16] repositories.

Of course, in contrast to the data we used in the medical case study, these benchmark

data sets do not provide any extra information about the reliability of a classification.

Therefore, most of the analyses of the previous section cannot be repeated here.

What can still be done with this kind of data is the computation of accuracy-rejection

curves, which, as explained in Section 5.5, provide at least an indication of the learner’s

ability to estimate and quantify reliability in a proper way. The curves that we produced

for the data sets included in our study are presented in Figure 7. As can be seen, these

curves are coherent with our previous results and fully confirm the conclusions that we

have already drawn in the medical case study.
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Figure 7: Accuracy-rejection curves for logistic regression on benchmark data sets.



7 Summary and Conclusions

In this paper, we made a distinction between two types of uncertainty in prediction, namely

aleatoric and epistemic uncertainty, and argued that this distinction should be of interest

in the context of learning from data, especially in safety-critical domains such as medical

diagnosis. Our understanding of a “reliable classifier” is a system that is “self-aware”

in the sense of knowing what it knows—and what not. Correspondingly, in addition to

the predictions themselves, the system should provide information about the reliability of

these predictions.

Here, a first step toward a system of that kind has been made. More concretely, we

developed a method for binary classification which, given a new query instance and two

different decision alternatives, does not only decide in favor of one of them, but instead

produces a prediction in the form of a quadruple: a degree of (strict) preference for the

first alternative, the same for the second alternative, the level of aleatoric uncertainty, and

the level of epistemic uncertainty.

Empirically, we evaluated our approach on a practically relevant medical data set contain-

ing information about more than 1000 chest pain patients and their diagnoses. Our results

are very promising insofar as they show that our measures of uncertainty harmonize quite

well both with the uncertainty expressed by the medical experts and the difficulty of the

diagnoses (as reflected by the probability of a wrong decision).

For future work, we plan to further expand on empirical studies of that kind, not restricted

to the medical domain but also in other fields. Besides, there is of course scope for im-

provements and further developments on the methodological side. One important aspect,

for example, is the computational complexity of our approach to reliable classification. In

fact, since each prediction involves the solution of an optimization problem, the method is

clearly critical from this point of view. Needless to say, the question of how to solve this

optimization problem in the most efficient way strongly depends on the underlying model

class which is used for learning. Developing efficient implementations for the most com-

mon approaches to (binary) classification is therefore another important topic of future

work.

Apart from methodological advancements and applications in the context of medical de-

cision making, we are also interested in corroborating our formal model with empirical

evidence and in testing its “cognitive plausibility”. For example, several neurophysio-

logical studies using functional magnetic resonance imaging (fMRT) have supported the

assertion that different forms of uncertainty exist [2, 15, 21], although definitions of un-

certainty seem to vary. Levy et al. [15] were able to show that the neural representation

of subjective value in situations where the estimation of different outcome probabilities

is possible and in situations in which this is not possible, relies on the same structures,



namely the striatum and the medial prefrontal cortex. Pushkarskaya et al. [21] argue to

differentiate between individuals who are averse or tolerant regarding missing information

because uncertainty might have different neural representations depending on the atti-

tude towards vague probabilities. On the one side, these studies can be regarded as an

external validation of our mathematical model of different types of uncertainties. On the

other side, our model could perhaps also be used to complement such studies in the sense

of providing a tool for cognitive modeling, i.e., for the construction of formal models of

cognitive processes complementing or explaining neurophysiological data.
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0 0 0 0 0 .078 60 0.0 .177 .017 .024 0.0 0.0 .021 0.0 0.0
1 0 0 0 0 .107 82 0.0 .397 .146 .048 0.0 0.0 .031 0.0 0.0
0 1 0 0 0 .119 91 .011 .097 .011 .006 0.0 .011 .021 0.0 .011
1 1 0 0 0 .095 73 .014 .181 .014 .011 0.0 .014 .024 0.0 .014
0 0 1 0 0 .003 2 0.0 .250 .500 .072 0.0 0.0 .001 .600 0.0
1 0 1 0 0 .008 6 .333 .253 .333 .133 0.0 .333 .380 .315 .333
0 1 1 0 0 .005 4 0.0 .115 0.0 .017 0.0 0.0 .001 .124 0.0
1 1 1 0 0 .007 5 0.0 .348 0.0 .037 0.0 0.0 .002 .057 0.0
0 0 0 1 0 .055 42 .024 .250 .071 .108 0.0 .024 .035 0.0 .023
1 0 0 1 0 .112 86 .140 .475 .221 .213 0.0 .140 .261 0.0 .143
0 1 0 1 0 .061 47 0.0 .104 0.0 .026 0.0 0.0 .016 0.0 0.0
1 1 0 1 0 .072 55 .036 .321 .091 .052 0.0 .036 .054 0.0 .036
0 0 1 1 0 .016 12 .333 .250 .167 .296 0.0 .333 .347 .146 .308
1 0 1 1 0 .038 29 .241 .472 .241 .524 0.0 .241 .336 .013 .241
0 1 1 1 0 .022 17 .118 .221 .059 .082 0.0 .118 .147 .010 .118
1 1 1 1 0 .021 16 .063 .234 0.0 .159 0.0 .063 .084 .003 .063
0 0 0 0 1 .016 12 0.0 .312 0.0 .093 0.0 0.0 .099 .010 0.0
1 0 0 0 1 .023 18 .111 .469 .278 .174 0.0 .111 .146 .008 .111
0 1 0 0 1 .026 20 0.0 .094 0.0 .024 0.0 0.0 .007 0.0 0.0
1 1 0 0 1 .026 20 0.0 .217 .050 .046 0.0 0.0 .067 0.0 0.0
0 0 1 0 1 0.0 0 - - - - - - - - -
1 0 1 0 1 .001 1 0.0 .600 1.0 .465 0.0 0.0 .001 .999 1.0
0 1 1 0 1 .001 1 0.0 .600 0.0 .085 0.0 0.0 .001 .999 1.0
1 1 1 0 1 .003 2 0.0 .500 .500 .134 0.0 0.0 .001 .333 0.0
0 0 0 1 1 .008 6 .333 .533 .333 .341 0.0 .333 .355 .369 .333
1 0 0 1 1 .022 17 .412 .466 .353 .598 .067 .412 .549 .251 .412
0 1 0 1 1 .004 3 0.0 .053 0.0 .109 0.0 0.0 .001 .171 0.0
1 1 0 1 1 .016 12 .083 .498 .333 .184 0.0 .083 .087 .008 .083
0 0 1 1 1 .003 2 1.0 .600 .500 .641 .113 0.0 .259 .387 0.0
1 0 1 1 1 .026 20 .600 .366 .300 .472 0.0 .400 .448 .116 .400
0 1 1 1 1 .005 4 0.0 .140 0.0 .303 0.0 0.0 .001 .117 0.0
1 1 1 1 1 .003 2 .500 .400 .500 .434 0.0 .500 .001 .333 1.0

Table 2: Characteristics of all patient groups including uncertainty values and error rates
(which are computed for the physician on the complete data and as out-of-sample statistics
for the classifiers).


