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Abstract We propose a novel framework and an algorithm for mining grad-
ual dependencies between attributes in a data set. Our approach is based on
the use of fuzzy rank correlation for measuring the strength of a dependency.
It can be seen as a unification of previous approaches to evaluating gradual
dependencies and captures both, qualitative and quantitative measures of
association as special cases.

1 Introduction

In association analysis, a widely applied data mining technique, the goal is
to find “interesting” associations in a data set, that is, dependencies between
so-called itemsets (binary attributes) A and B expressed in terms of rules
of the form “IF A THEN B”. The intended meaning of a rule of that kind
is that, if A is present in a transaction, then B is likely to be present, too.
Association rule mining has also been extended to the fuzzy case, in which
the presence of an item in a transaction is a matter of degree [7].

Another type of association rule, called gradual dependency, has been in-
troduced in [10] and was further studied in [2, 11]. As explained in Section 2,
the idea is to express dependencies, not between the presence or absence
of attributes, but between the change of the presence of fuzzy items in a
transaction. The contribution of this paper is a novel framework for mining
gradual dependencies that is based on the use of fuzzy rank correlation as a
measure of confidence (Section 3). This framework can be seen as a unifica-
tion of previous approaches and captures both, qualitative and quantitative
measures of association (Section 4). We also propose an algorithm for mining
gradual dependencies and illustrate the method on a wine quality data set.
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2 Gradual Dependencies

We adopt a feature-based representation of transactions (data records) and
denote by A the (finite) set of underlying fuzzy attributes. Thus, each trans-
action is represented in terms of a feature vector u, and for each A € A,
A(u) € [0,1] indicates the degree to which w has feature A or, say, to which
A is present in u. Correspondingly, the degree of presence of a feature subset
A ={A4y,...,An} C A, considered as a conjunction of primitive features
A1, ..., Am, is given by A(u) = T(A1(u), Az(u),..., An(uw)), where T is a
triangular norm (t-norm) serving as a generalized conjunction.

Given a data set consisting of N transactions uq,...,uy, a standard prob-
lem in (fuzzy) association analysis is to find all rules A — B whose support
and confidence, defined as

S T(A(ws), Blu))
o Alws)

exceed user-defined thresholds. A rule of such kind indicates the frequent
occurrence of B given A (confidence), confirmed by sufficiently many exam-
ples (support). On a logical level, the meaning of a standard association rule
A — B is captured by the material conditional. On a natural language level,
such a rule is understood as an IF-THEN construct: If the antecedent A
holds true, so does the consequent B.

As mentioned above, another type of pattern, called gradual dependency,
was introduced in [10]. Here, the idea is to express dependencies between the
direction of change of attribute values. This idea is closely connected to so-
called gradual rules in fuzzy logic. On a logical level, such rules are modeled
in terms of residuated implication operators. Semantically, a rule A — B is
often understood as “THE MORE the antecedent A is true, THE MORE
the consequent B is true”, for example “The larger an object, the heavier it
is” [8]. This interpretation is arguable, however. In fact, to satisfy a gradual
fuzzy rule in a logical sense, it is enough that A(u) < B(u); thus, there is
actually no consideration of the change of an attribute value and, therefore,
no examination of a tendency.

N
supp = Z T(A(u;), B(u;)), conf = , (1)

2.1 FEvaluating Gradual Dependencies

Instead of pursing a logical approach using implication operators to evaluate a
rule A — B, it was proposed in [10] to take the so-called contingency diagram
as a point of departure. A contingency diagram is a two-dimensional diagram
in which every transaction u defines a point (z,y) = (A(u), B(u)) € [0,1]2.
Thus, for every transaction w, the values on the abscissa and ordinate are
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given, respectively, by the degrees x = A(u) and y = B(wu) to which it satisfies
the antecedent and the consequent part of a candidate rule.

Informally speaking, a gradual dependency is then reflected by the re-
lationship between the points in the contingency diagram. In particular, a
“THE MORE ... THE MORE” relationship manifests itself in an increas-
ing trend, i.e., an approximate functional dependency between the z- and
y-values: the higher z, the higher y tends to be. In [10], it was therefore
suggested to analyze contingency diagrams by means of techniques from sta-
tistical regression analysis. For example, if a linear regression line with a
significantly positive slope can be fit to the data, this suggests that indeed a
higher = A(u) tends to come along with a higher y = B(u).

A qualitative, non-parametric alternative to this numerical approach was
proposed in [2]. Roughly speaking, to evaluate a candidate rule A — B, the
authors count the number of pairs of points (z,y) and (z/,y’) in the contin-
gency diagram for which < 2’ and y < 3. As an advantage of this approach,
note that it is more flexible in the sense of not making any assumption about
the type of functional dependency; as opposed to this, the regression ap-
proach implicitly assumes a linear dependency. On the other hand, since the
actual distances between the points are ignored, there is also a disadvantage,
namely a loss of information about the strength of a relationship.

The two above approaches, the numerical and the qualitative one, essen-
tially come down to looking for two types of correlation between the xz- and
y-values, namely the standard Pearson correlation and the rank correlation.
The goal of this paper is to combine the advantages of both approaches. To
this end, we propose to measure the strength of a dependency in terms of
a fuzzy rank correlation measure that combines properties of both types of
correlation. As will be seen, this measure is able to capture the strength of
a tendency while remaining flexible and free of specific model assumptions.
Our proposal is related to the approach presented in [12] but additionally
offers a sound theoretical justification.

3 Fuzzy Rank Correlation

Consider n > 2 paired observations {(z;,v;)}"; C (X x Y)™ of two vari-
ables X and Y, where X and Y are two linearly ordered domains; we denote
x = (x1,%2,...,2n) and y = (y1,Y2,...,Yn). The goal of a rank correlation
measure is to measure the dependence between the two variables in terms of
their tendency to increase and decrease in the same or the opposite direction.
If an increase in X tends to come along with an increase in Y, then the (rank)
correlation is positive. The other way around, the correlation is negative if
an increase in X tends to come along with a decrease in Y. If there is no
dependency of either kind, the correlation is (close to) 0.
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Several rank correlation measures are defined in terms of the number C
of concordant, the number D of discordant, and the number N of tied data
points. For a given index pair (4, ) € {1,...,n}?, we say that (4, 5) is concor-
dant, discordant or tied depending on whether (x; — x;)(y; — y;) is positive,
negative or 0, respectively. A well-known example is Goodman and Kruskal’s
gamma rank correlation [9], which is defined as v = (C'— D)/(C + D).

3.1 Fuzzy Equivalence and Order Relations

Bodenhofer and Klawonn [5] propose a fuzzy extension of the gamma coeffi-
cient based on concepts of fuzzy orderings and T-equivalence relations, where
T denotes a t-norm [3].

A fuzzy relation E : X x X — [0, 1] is called fuzzy equivalence with respect
to a t-norm T, for brevity T-equivalence, if it is reflexive (E(z,z) = 1), sym-
metric (E(z,y) = E(y,x)), and T-transitive (T(E(z,y), E(y, 2)) < E(z, 2)).
Moreover, a fuzzy relation L : X x X — [0, 1] is called fuzzy ordering with re-
spect to a t-norm T and a T-equivalence E, for brevity T-FE-ordering, if it is
E-reflexive (E(z,y) < L(z,y)), T-E-antisymmetric (T (L(x,y), L(y,z)) <
E(z,y)), and T-transitive(T (L(x,y), L(y, 2)) < L(z,z)). We call a T-E-
ordering L strongly complete if max(L(z,y),L(y,z)) = 1 for all z,y € X.
Finally, let R denote a strict fuzzy ordering associated with a strongly com-
plete T-FE-ordering L; in the case of the well-known Lukasiewicz t-norm,
defined by T(x,y) = max(0,z + y — 1), this relation can simply be taken as
R(z,y) = 1— L(z,y) [4].

3.2 The Fuzzy Gamma Rank Correlation

Consider a set of paired data points {(z;,y;)}7_; C (XxY)™ and assume to be
given two T-equivalences Fx and Ey and two strict fuzzy order relations Rx
and Ry. Using these relations, the concepts of concordance and discordance of
data points can be generalized as follows: Given an index pair (4, j), the degree
to which this pair is concordant, discordant, and tied is defined, respectively,
as

C(i,j) = T(Rx(i, %), Ry (yi, y;)), (2)
D(i,j) = T(Rx(ws,2;), Ry(y;, yi)), (3)
T(i,j) = L(Ex(xi,z;), By (yi, yj)), (4)

where T is a t-norm and L is the dual ¢-conorm of T (i.e. L(z,y) =1-T(1—
x,1 —1y)). The following equality holds for all index pairs (3, j):

C(i,5) + C(4,9) + D(i,4) + D(j,i) + T(i, j) = 1.
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Adopting the simple sigma-count principle to measure the cardinality of a
fuzzy set, the number of concordant and discordant pairs can be computed,
respectively, as

C=> > Cl,j), D=>> D(,j).
i=1 j#i i=1 j#i

The fuzzy ordering-based gamma rank correlation measure 7, or simply “fuzzy
gamma”, is then defined as
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From the definition of 7, it is clear that the basic idea is to decrease the
influence of “close-to-tie” pairs (z;,y;) and (z;,y;). Such pairs, whether con-
cordant or discordant, are turned into a partial tie, and hence are ignored
to some extent. Or, stated differently, there is a smooth transition between
being concordant (discordant) and being tied; see Fig. 1.
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Fig. 1 Example of a contingency diagram. The pair (w1, u2) is concordant, while (w1, ws)
is discordant. Points with a distance < r from w1 in one of the dimensions (gray region)
are considered as partially tied with w;. For example, the pair (w1, u3) is concordant to a
degree < 1.

4 Mining Gradual Dependencies

Our idea is to evaluate a gradual dependency A — B in terms of two mea-
sures, namely the number of concordant pairs, C, and the rank correlation
4 as defined in (5). Comparing this approach with the classical setting of
association analysis, C' plays the role of the support of a rule, while 4 cor-
responds to the confidence. These measures can also be nicely interpreted
within the formal framework proposed in [7], in which every observation (in
our case a pair of points (A(u), B(u)) and (A(v), B(v))) is considered, to a
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certain degree, as an example of a pattern, as a counterexample, or as being
irrelevant for the evaluation of the pattern. In our case, these degrees are
given, respectively, by the degree of concordance, the degree of discordance,
and the degree to which the pair is a tie.

4.1 Evaluation of Candidate Rules

More formally, we define the support and confidence of a gradual dependency
A — B as follows:

. G-D
supp(A — B) =C, conf(A— B) = e D
where
C=3"3"Cluiuy) =3 T (L (Aw;), A(wy)), L (Bu;), Blwy))),
D=5 Dluiuy) =33 T(L(A(w), Aw;)), L (Bluy), B(us))) .

Considering the special case of the Lukasiewicz t-norm, it can be verified that
E(z,y) = [1—|z—y|/r]} is a T-equivalence on R and R(z,y) = [(z—y)/r]} is
a strict fuzzy ordering, where [-]} denotes the mapping a — min(1, max(0,a)).
Note that these relations are parameterized by the value r € (0,1]. For r —
0, the confidence measure converges toward the classical (non-fuzzy) rank
correlation, whereas for r = 1, we obtain R(z,y) = = —y if x > y and
= 0 otherwise. The degree of concordance (discordance) is then proportional
to the Euclidean distances, which means that this case is very close to the
numerical evaluation in terms of Pearson correlation.

4.2 Rule Mining and Algorithmic Issues

Due to the associativity of a t-norm, the support of a rule A — B just
corresponds to the support of the itemset Z = A U B. In other words, to
compute a degree of concordance, there is no need to separate an itemset
into an antecedent and a consequent part of a rule. Moreover, it is easy to
see that the support measure is anti-monotone, i.e., supp(Z) < supp(J) for
J C Z. Consequently, the candidate generation and pruning techniques of
the standard Apriori framework can be used to find all frequent itsemsets,
i.e., all itemsets whose support exceeds a user-defined threshold [1].

To compute the support of an itemset, we adopt some ideas that were pre-
sented in [11] for the binary case and can easily be extended to the fuzzy case.
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Suppose that, for a given itemset Z, the concordance degrees C (u;, u;) are
stored in an |N| x | N| matrix. From this matrix, supp(Z) can easily be com-
puted by summing all entries. Moreover, given the matrices for two itemsets
7 and J, the matrix for the union ZU.7 is obtained by a simple position-wise
t-norm combination. This approach is appealing for programming languages
specifically tailored to matrix computations. In general, however, the stor-
age requirements will be too high, especially noting that the matrices are
normally quite sparse. More efficient implementations should hence exploit
dedicated techniques for handling sparse matrices that, amongst others, avoid
the storage of zero entries.

For each itemset Z exceeding the given support threshold, a set of can-
didate rules A — B is derived by splitting Z into antecedent part A and
consequent part B. For reasons of comprehensibility, we restrict ourselves to
the case |B| = 1, i.e., to consequents with a single attribute. A candidate rule
of that kind is presented to the user if it exceeds the confidence threshold.
While the concordance of the rule, C, is already known, this decision requires
the additional computation of the discordance D.

4.8 Illustration

To illustrate our method (a thorough empirical evaluation is precluded due to
space restrictions), we applied it to the Wine Quality data set from the UCI
repository, in which each data record corresponds to a red wine described
in terms of 11 numerical attributes and a quality degree between 0 and 10.
Each attribute was replaced by two fuzzy attributes small and large with
membership degrees 1 (0) and 0 (1) for the smallest and largest value, re-
spectively, and linearly interpolating in-between. Using r = 0.1, we found the
following rules exceeding a confidence threshold of 0.6:

The more fixed acids and the more alcohol, the better the quality.
The more volatile acids and sulfur dioxides, the lower the quality.
The more volatile acids and the less alcohol, the lower the quality.
The more sulfur dioxides and the less sulfates, the lower the quality.
The more sulfur dioxides and the less alcohol, the lower the quality.
The more sulfates and alcohol, the better the quality.

Roughly, one can observe that the amounts of volatile acids, sulfates and
alcohol seem to have the strongest influence on the quality of the wine, with
the former in a negative and the latter two in a positive manner. These results
seem to agree quite nicely with oenological theory [6].
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5 Concluding Remarks

We have presented a unified framework for mining fuzzy gradual dependen-
cies, in which the strength of association between itemsets is measured in
terms of a fuzzy rank correlation coefficient. As explained above, this frame-
work generalizes previous proposals and allows for a seamless transition from
a purely qualitative to a quantitative assessment.

An important aspect to be addressed in future work concerns more efficient
algorithms and implementations for mining gradual dependencies. Due to
the need to compare pairs of observations, the inherent problem complexity
increases from linear to quadratic in the size of the data set. Thus, in order
to guarantee scalability, efficient pruning techniques are needed that avoid
unnecessary comparisons. Since the concordance relation in rank correlation
is in direct correspondence to Pareto-dominance in preference modeling, it
might be interesting to exploit algorithms that have recently been developed
for the computation of so-called skylines (Pareto sets) of a database [13].
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