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Abstract

Graphs are frequently used to describe the geometry and also the physicochem-
ical composition of protein active sites. Here, the concept of graph alignment as
a novel method for the structural analysis of protein binding pockets is presented.
Using inexact graph-matching techniques, one is able to identify both conserved
areas and regions of difference among different binding pockets. Thus, using mul-
tiple graph alignments, it is possible to characterize functional protein families and
to examine differences among related protein families independent of sequence or
fold homology. Optimized algorithms are described for the efficient calculation of
multiple graph alignments for the analysis of physicochemical descriptors represent-
ing protein binding pockets. Additionally, it is shown how the calculated graph
alignments can be analyzed to identify structural features that are characteristic

for a given protein family and also features that are discriminative among related
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families. The methods are applied to a substantial high-quality subset of the PDB
database and their ability to successfully characterize and classify 10 highly popu-
lated functional protein families is shown. Additionally, two related protein families
from the group of serine proteases are examined and important structural differences
are detected automatically and efficiently.

Keywords: Knowledge Discovery in Databases, Structural Pattern Discovery,

Fuzzy Patterns, Graph Mining, Drug Design

1 Introduction

Bioinformatics often focuses on the study of large and complex biological molecules such
as DNA or proteins. A typical goal is to identify common features present in different
molecules and thus to reveal evolutionary relationships among the examined molecules.
Frequently, one is interested in the identification of homologies, i.e. to extract pairs
of molecules that are likely to have a common ancestor. A plethora of methods based
on sequence alignment has been developed to find such evolutionary dependencies in
biological sequence data. In particular, the multiple sequence alignment is an established
approach for the identification of residues that are conserved across many members of
a gene or protein family [36, 6, 32]. Position specific scoring matrices are derived from
multiple sequence alignments and allow for the assignment of novel sequences to known

families [1].

Here, we present the development of a comparable concept for the identification of func-
tional relationships among proteins that is solely based on structural information and
independent of sequence or fold homology. Proteins interact specifically with other
molecules, such as substrates, agonists, antagonists or allosteric modulators. These func-
tional binding partners are recognized by the protein in binding sites that are complemen-
tary in shape and physicochemical properties to the bound molecule. The shape of such
a binding pocket is therefore intimately related to the function of the respective protein.

In particular, the characterization of binding pockets is of interest for pharmaceutical



research as strong binding to the active site of a protein is frequently the mechanism of

action of drugs.

A number of authors have proposed the use of graph models to represent and analyse
three-dimensional protein structures |15, 26, 25, 18, 21, 37|. The present work builds upon
Cavbase [31, 19], a database system for the fully-automated detection and extraction of
protein binding pockets from experimentally determined protein structures (available
through the database PDB [8]). Graphs are used as a first approximation to describe

binding pockets in Cavbase.

A large number of approaches has been described in the literature for the structural
analysis of protein active sites. These can be roughly divided into two main categories:
approaches that derive templates from a family of related structures |2, 5, 35, 37, 16, 24|
and those that rely on the comparison of individual structures |29, 34, 21, 31]. The work
presented here is closely related to the template-based approaches. Although some of
the referenced methods are based on graph models, none of them is using inexact graph
matching techniques to derive templates or to classify structures. The major advantage
of the method presented here is the fact that the consensus graphs used to characterize a
functional protein family are not of a fixed small size. Instead, the size of the consensus
graph depends on the size of the generated graph alignment. It does not only contain
a rather small number of highly (or even perfectly) conserved residues, but it contains
instead a node for each center that is found in at least one of the aligned binding pockets
(cf. Section 4.1). Thus, also weakly conserved patterns that are not necessarily found in
each member of a family can be identified. As a degree of conservation is calculated and
stored for each node in a consensus graph, it is also possible to reduce a consensus graph

in such a way that it contains only highly conserved (e.g., catalytic) residues.

Inexact graph matching techniques have been studied intensively in the field of pattern
recognition [13]. But there, with very few exceptions [38], only the pairwise graph match-
ing case is considered. Additionally, it is not the goal of pattern recognition applications
to derive descriptive and interpretable models for certain classes of objects. Recently,

graph alignment gained increasing attention for the analysis of biological networks in the



field of systems biology [7, 23|. Yet, the methods developed for systems biology appli-
cations are not applicable to the problem examined here: Biological networks are huge,
but sparse graphs (i.e., tree-like graphs) and usually, a nearly unique correspondence
among the different nodes of different networks exists. Thus, the problem of aligning a
small number of networks is algorithmically different from the problem of aligning a large

number of very dense protein binding pocket descriptors that is studied here.

This paper is organized as follows: In Section 2, we introduce some basic concepts and
state the problems examined in this paper. Additionally, the section contains a formal
description of the concept of graph alignment. In Section 3, we present an algorithm for
the efficient calculation of graph alignments and in Section 4, methods for the analysis
of graph alignments are discussed. Section 5 describes the experimental validation of the

approach analyzing the number of known functional families of enzymes.

2 Problem Statement

Throughout this paper, it is assumed that a set G = {G1(V1, Ey),...,Gn(V,, E,)} of
connected, node-labeled and edge-weighted graphs is given, each of them representing a
protein binding pocket. The geometrical arrangement and the physicochemical proper-
ties of a binding pocket are represented by pre-defined pseudocenters — spatial points
that represent the center of a particular property. The type and the spatial position of
the centers depend on the amino acids that border the binding pocket and expose their
functional groups. They are derived from the protein structure using a set of pre-defined
rules [31]. As possible types for pseudocenters hydrogen-bond donor, acceptor, mixed
donor /acceptor, hydrophobic aliphatic and aromatic properties are considered. Pseudo-
centers can be regarded as a compressed representation of areas on the cavity surface

where certain protein-ligand interactions are experienced.

The assigned pseudocenters form the nodes v € V; of the graph representation, and their
properties are modeled in terms of node labels I(v) € {1,...,5}, whereas 1 stands for

donor, 2 for acceptor, etc. Two centers are connected by an edge in the graph represen-
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tation if their Euclidean distance is below 12.0 A and each edge e € E,, is labeled with
the respective distance w(e) € R'. The edges of the graph thus represent geometrical
constraints among certain properties. Cavbase currently contains 113,718 hypothetical
binding pockets that have been extracted from 23,780 publicly available protein struc-
tures using the LIGSITE-algorithm [20]. In the crystal structures used as input, not all
of the extracted cavities actually host a bound ligand. Some of them represent clefts
or depressions on the protein surface to which a straight-forward assignment of a bio-
chemical function is difficult. On average, a graph representation of a binding pocket has
approximately 85 nodes; however, also graphs with several hundred nodes are frequently
detected and extremes with thousands of nodes are generated. The graphs are rather
dense as approximately 20 percent of all pairs of nodes are connected by an edge. Some
PDB entries have been discarded due to their low resolution or due to other qualitative

deficiencies?.

The goal of this paper is to characterize functional protein families by detecting conserved
structural patterns in a given family along with discriminative patterns between different,
but related families. We thus further assume that we are given a class membership
function ¢ : G — N that assigns each graph descriptor to a certain functional class (or
category). Here, the functional classification of the ENZYME database [4] is used and
all enzyme entries that are annotated by the same E.C.-number [28] are defined as one

functional class.

When comparing homologs from different species in protein cavity space, one has to deal
with the same mutations that are also given in sequence space. In the cavity space,
such mutations result in the replacement of certain functional groups by other functional
groups while the overall fold of the protein virtually is preserved. Additionally, proteins
exhibit conformational flexibility, thus even structures of the same protein can differ sig-
nificantly in space. This is particularly the case when structures of protein-ligand com-

plexes are compared to the uncomplexed structures. Such mutations and conformational

1An interaction distance of 12.0 A is chosen as cutoff value to concentrate on local features in the
binding sites. Furthermore, the resulting graphs are more sparsely populated.
2The figures in this paragraph correspond to the database release as of June 2005.



differences heavily affect also the spatial structure of a binding site, and in consequence
the graph descriptors. Thus, one cannot expect that the graph descriptors for two related
binding pockets match exactly. In this contribution, the following types of edit operations

that distinguish a graph G1(V}, E}) from an other graph G5(V3, E5) are considered:

1. Insertion or deletion of a node v; € V; (“InDel”). A pseudocenter can be deleted or
introduced due to a mutation in sequence space. Alternatively, a conformational
difference can affect the exposure of a functional group towards the binding pocket,

accordingly an insertion or deletion in the graph descriptor could result.

2. Change of the label /(v,) of a node v; € V; (“Node Mismatch”). The assigned
physicochemical property (“type”) of a pseudocenter can change if a mutation re-
places a certain functional group by another type of group at the same position in

space.

3. Change of the weight w(e;) of an edge e; € E; (“Edge Mismatch”). The distance

between two pseudocenters can change due to conformational differences.

By assigning a cost function to each of these edit operations, it is possible to define an
edit distance to a pair of graph descriptors. The edit distance of two graphs G;,G5 is
defined as the cost of a cost-minimal sequence of edit operations that is necessary to
transform graph G, into G5. As in sequence analysis, this allows for the introduction of
the concept of an alignment of two (or more) graphs. This requires the introduction of
dummy nodes | that serve as placeholders for deleted nodes. They correspond to the

gaps in sequence alignment (cf. Figure 1).

Let G = {G1(V}, Ey),...,Gn(Vy, E,)} be a set of graphs. Then A C (V; U{L}) x--- X

(V, U{L}) is an alignment of the graphs in G if and only if

1. foralli =1,...,n and for each v € V; exists exactly one a = (aq,...,a,) € A such

that v = a; (i.e., each node of each graph occurs exactly once in the alignment).

2. for each a = (ay,...,a,) € A exists at least one 1 < i < n such that a; #L (i.e.,

each tuple of the alignment contains at least one non-dummy node).

6



Figure 1: An alignment of four similar, but not identical graphs. The node labels are
indicated by the letters assigned to the nodes (shown as circles). The edge labels are
omitted for simplification. The assignments among the different graph nodes are indi-
cated by the dashed lines. Large boxes in grey represent dummy nodes that have been
introduced in the alignment to represent “missing” nodes.
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Figure 2: Textual representation of the graph alignment in Figure 1. Each row contains
the labels of the nodes of one of the graphs. The first row represents the leftmost graph,
the last row the rightmost graph. The columns represent nodes that are assigned to
each other. Dummy nodes | are represented as dots. A major difference compared
to sequence alignments is that the order of the columns is arbitrary (i.e., it is possible
to swap complete columns without affecting the meaning of the alignment). From this
representation, it is obvious that the columns 3,4, 6,7 contain centers which are highly
conserved and in which graphs conserved nodes are missing or labelled differently.

Each tuple in the alignment contains a certain number of nodes from the different graphs

that are matched upon each other. If a node has no matching partner in a certain graph,

it has to be mapped onto a dummy node 1.

To assess the quality of a given alignment, a scoring function is necessary. This scoring
system corresponds to the above-mentioned edit distance, as each graph alignment defines
a set of edit operations that have to be performed to transform one of the aligned graphs
into another entry of the alignment. Here, a scoring function that follows a sum-of-pairs
scheme (i.e. a multiple graph alignment is reduced to a set of pairwise graph alignments

that are scored individually; the obtained scores are summed subsequently) is proposed:



Parameter Value

nScore,, .ich 1.0
nScore, . cmatch -5.0
nScoredummy -2.5

eScore,, .ich 0.2 (2.0 — |w(al, ai) —w(af, a{)|)
—escoremismatch -0.1
eScoredummy -0.2
€ 2.0

Table 1: Default parameter settings used during the experiments presented in this article

The score s for a given alignment A = (a', ..., a™) is defined as
m m
s(A) = nodeScore(a’) + > edgeScore(a’,a’) (1)
i=1 i,j=1,1<j
where
(
a’i 7nscorematch l(a';) - l(a;f)
n
nodeScore | | = Z nScore, .. I(a) # U(aj,) (2)
' jk=1,i<j
(2 . .
n, nScoredummy a, =1, CL; #Lix,y=7k
\
and
(
|w(ag, ay) — w(aj, a7)| < e
a a ]1 eScore,, .ion , ,
_ _ r |w(a, a;) —w(aj, a7)| > €
edgeScore : ) : = Z eScore, i smateh o o
y . k=1, k<l (a},a)) € By, (ay,a]) ¢ Ey;
n n eSCOre gymmy
x,y =kl

(3)

The scores for the different cases (i.e., n.Score,,sen s 1SCOT€, i maten> TSCOT€ gy > ESCOT€tens

eScore eSCOT€ 1yymmy) have to be defined by the user. Table 1 shows the parameter

mismatch

settings that were used for the examples given in section 5.



3 Algorithms

The problem of calculating an optimal graph alignment for a given set of graphs is
computationally very complex. The subgraph isomorphism problem (which is known to
be NP-complete [3]) can be seen as a special case of the graph alignment problem where
the cost for mismatches is set prohibitively high. Thus, one cannot expect to find an
efficient algorithm that is guaranteed to find an optimal alignment for a given set of
graphs. In this section, simple and efficient heuristics for the graph alignment problem
are therefore described that were found to be useful for the problem instances that we
examined. First, only the pairwise case (i.e. calculating an optimal graph alignment for
only two graphs) is examined and later, it is shown how the multiple case can be reduced

to the pairwise case.

3.1 Pairwise Graph Alignments

Our heuristic for the pairwise graph alignment problem is based on the assumption that
two graphs G1(V1, E1) and Go(Va, E5) with a relatively small edit distance (and those are
of particular interest in our application as described in Section 2) share a common sub-
graph that is contained in both graphs without any modifications. A similar assumption
is often made in string matching, where it can be motivated by the g—gram lemma from
Jokinen and Ukkonen [22]. The strategy thus proceeds in two steps: Firstly, common
subgraphs of the input graphs are identified using well-established techniques for exact
graph matching [11, 27]. These subgraphs are subsequently used as seed solutions and

extended greedily until all nodes of both graphs are considered in the alignment.

The problem of searching for maximal common subgraphs among the input graphs (“sub-
graph isomorphism”) can be reduced to a clique search problem by constructing an asso-
ciation graph A(V, E) with V' C Vj x V5. A contains a node for each pair of nodes from
the input graphs GG; and G, that are compatible with each other as they share the same
node label. Each node of A thus represents a trivial common subgraph of size 1. Two

nodes in A are connected by an edge if and only if either the corresponding nodes in G



and in GG, are connected by edges with compatible edge labels or if they are connected by
edges neither in G nor in G5.> The edges in A thus connect trivial common subgraphs
that are compatible with each other. Therefore, a maximal clique in A corresponds to
a maximal number of trivial common subgraphs that can be merged into one large non-
trivial common subgraph of G; and G,. After construction of the association graph A,
one can apply the branch-and-bound algorithm of Bron and Kerbosch [11] to identify
maximal cliques in A.* Each of the generated subgraph isomorphisms is subsequently

subjected to the second step of our strategy, which is detailed below.

This second step expects as input a subgraph isomorphism (i.e. a common subgraph)
that serves as a seed for further extension. The goal of the extension step is to find,
for each node of (G; that is not already part of the seed solution, a match partner in
Go (possibly a dummy node). Vice versa, for each node in G5, a corresponding node
in GG7 has to be detected. As a graph alignment has to be constructed and mismatches
are allowed, many different assignments among the remaining nodes in (G; and G5 are
possible. To reduce the number of possibilities, additional constraints on the mapping are
necessary. These result from the edges in G; and Gs. Thus, the extension of the initial
solution should start with a node of G; for which only few alternative match partners
in G4 exist, i.e. for which many constraints are given. Therefore, the algorithm starts
with the remaining center v; of G; that has the highest number of edges to those nodes
that are already part of the solution. This center is highly constrained and should thus
map to G relatively unambiguously. We now enumerate all remaining nodes vy of G,
and calculate the score for the mapping of vy to vy, If I(v1) = I(v2), a bonus for the
matching label is added (nScore,, ..,), Otherwise a penalty score for a mismatch is added

Similarly, match and mismatch scores are calculated for the edges by

(mmismatch ) .

comparing all edges starting from v; and ending within the initial solution in G to the

3To further improve the efficiency of the method, we introduce an edge in A only if the corresponding
nodes in G; and G are connected. Thus, only complete common subgraphs (i.e., cliques) are identified.
Yet, as the graph descriptors in our application are quite dense, this is not a too strong restriction.
Additionally, one should keep in mind that the detected common subgraphs are only used as seed
solutions and are further extended in the second step.

4 As the number of cliques can be quite large for our graph descriptors, we determined experimentally
that it is sufficient to consider only up to n = 100 seed solutions for our graph descriptors.
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corresponding edges starting from v, and ending within the initial solution in G5. Then,
the best matching partner v} is selected and the mapping of v; to v} is incorporated in
the solution. If no favorable mapping is found for v; (i.e., the mapping of v; to a dummy
node yields a higher score than any other alternative), the respective dummy node is
inserted in the alignment. The process continues iteratively. Note that, as the solution is
extended step by step, the number of constraints on the remaining nodes of GG; and G,

can increase and thus lead to a better alignment (cf. Algorithm 1).

The strategy that we described in this section is capable to calculate an alignment for
two graphs with 80 — 120 nodes in less than 5 seconds on a standard Linux machine,
whereas an exhaustive enumeration of the search space would be intractable. The ob-

tained alignments achieve a high quality with respect to the experiments detailed below.

3.2 Multiple Graph Alignments

The number of graph descriptors to be aligned usually exceeds two as many different
structures are available for most of the relevant protein families. Thus, the approach for
the determination of pairwise graph alignments has to be extended to multiple compar-
isons. As a sum-of-pairs scheme is used for the scoring function that reduces the scoring
of the multiple case to a series of pairwise cases, it is reasonable to construct a multiple
graph alignment from a set of pairwise alignments. Therefore, the strategy for calculat-
ing pairwise graph alignments described in the previous section can be applied without

modification and used as a sub-routine by the algorithm described in the following.

The problem of calculating a multiple graph alignment thus reduces to the problem
of incrementally merging pre-calculated pairwise alignments. The simplest strategy to
perform such an incremental merging is to calculate a star alignment, i.e. one of the
graph instances is used as a pivot (which is also called center) and all other instances are
aligned to this pivot. A similar strategy is also frequently used in sequence alignment [33].
The different pairwise alignments are incrementally merged into one multiple alignment:

If node vy of the pivot graph G is mapped onto v, € G5 and independently onto vz € Gj,

11



Input : Graphs G1(V4, E1), Go(Va, Es)
Output: Alignment A for the graphs G1,G>
//construct association graph A(V, F)
foreach v; € V] do
foreach v, € V; do
if l(Ul) = Z(Ug) then
insert node (v;,vy) into V

end
end
end

foreach v = (v1,v5) € V do
foreach v = (v},v5) € V do
if |w(vy,v]) — w(ve, vh)| < € then
insert edge (v,?v’) into F

end
end
end

// find seed matches and extend greedily
for up to n cliques C' in A do
insert each (vy,v2) € C into A
foreach v, € V; with v; ¢ C do
collect in WW; edge weights to all nodes contained in C adjacent to v,
foreach v, € V;, with vy ¢ C do
collect in W, edge weights to all nodes contained in C' adjacent to v
if [(v1) = l(v9) then
score := nScore

match
else
score = Mmismatch
end

foreach w; € W; do
look up corresponding w, € W,

if |w; — ws| < € then
score = score + eScore

match
else
score 1= score + eScore, ;.. ..
end
end

end
select v}, with maximal score
if score > nScore ,, then
insert (v, v}) into A
else
insert (v;, L) into A

end
end
end

select and return A with maximum overall score

Algorithm 1: Algorithm for the calculation of pairwise graph alignments using a greedy
strategy.
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it is assumed that also v, can be mapped onto vs and the tuple (v, v, v3) is considered
in the multiple alignment. If one of the considered nodes vy, v, v3 is a dummy node, it is
handled accordingly. Thus, if a dummy node is inserted in one of the pairwise alignments,

this decision is never reversed (cf. Algorithm 2).

The quality of the generated alignment depends on the choice of the center graph. To
cope with this fact, one typically tests different (if not all possible) graphs as centers and
calculates the overall score of all generated multiple alignments. Finally, the alignment

with the best score is selected for further consideration.

A major advantage of the star-like alignment scheme is its ability to construct alignments
incrementally. As the number of publicly available protein structures is growing very fast
in the recent years, it is important to update the alignment models for a certain protein
class once new data become available. Fortunately, this is easily done for star alignments:
Given a star alignment and a new graph descriptor that should be added to the alignment,
one simply calculates an alignment to the known pivot graph and then adds the new graph
descriptor to the alignment as described above.

Input : Alignments 4, 4s, both containing pivot graph G;(V;, E;)
Output: Merged Alignment from A; and A,

foreach a = (a.1,...,a.n) € A; do
if 3’ = (d’.1,...,d".m) € Ay s.t. a.i =d'.i then

replace a’ € A; by ' = (d'.1,...,d".m,a.1,... an)
else
insert «’ = (L,..., L,a.1,...,an) € A
end
end

foreach o' = (d'.1,...,d'.n) € A; do
if Aa= (a.1,...,a.n) € Ay s.t. a.i = d'.i then
insert " = (a’.1,...,d/m, L, ..., 1) e A

end
end

return A;

Algorithm 2: Algorithm for the star-like merging of graph alignments using a fixed
reference graph G; as center.
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4 Analysis of Graph Alignments

Once a set of graph descriptors is arranged in a common graph alignment, it is easy to
examine the dependencies among the presence, the absence and the labelling of certain
nodes and edges with respect to the class membership of the corresponding graph in-
stances. This is possible because graph alignments induce a unique assignment across
the nodes present in the different graphs. This provides the opportunity to find “equiv-
alent” nodes for each given node of one graph in the other graphs (including possible

dummy nodes).

4.1 Consensus Graphs

For a given set of graph descriptors assigned to a certain functional class, it is interesting
to determine which of the pseudocenters are highly conserved across all aligned binding
pockets and thus can be regarded as characteristic for the respective functional class. To
achieve this goal, a “fuzzy” consensus graph G'(V’, E’) is calculated based on the graph
alignment A that contains a node v’ for each tuple a = (a4, ..., a,) € A in the alignment.
For each node v’ of the consensus graph, a degree of conservation con(v’) is calculated:

Z?:l s(ai)

L (4)

con(v') =

where

s(a;) = ; (5)
1 a; #L

i.e. con is simply the relative number of graphs in A in which the respective node is
present. The relative frequencies of the different e node labels considered in the analysis
are calculated accordingly. Consequently, for each edge e connecting two nodes of the
consensus graph a similar degree of conservation is calculated. For the continuous edge
weight w(e), one calculates the average value avg(e) and the variance var(e) around that

value. The thus obtained consensus graph can be seen as a prototype or even as a “mean”
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for the class of graph descriptors.

It is therefore possible to use the consensus graphs as nearest neighbor classifiers and
additionally as prototypes for the functional class under consideration. As it contains
information about the degrees of conservation and the distributions of edge and node
labels, it is clearly superior to a single centroid graph. To assess for a given graph G its
membership in a certain class, one has to examine whether G is present in the consensus
graph G’ for the respective class. As a robust search for such occurrences is desirable,
again the concept of graph alignment is applied. Given the consensus graph G’ and
the query graph G, a pairwise graph alignment 4 can be calculated using the methods
described in Section 3.1. As already noted above, it is always possible to calculate such an
alignment — even if G does not contain a single conserved node from G'. It is therefore
necessary to score the obtained alignment 4 to assess how well G fits into the class
represented by G’. This scoring step is performed using a modified version of the scoring
scheme applied to score graph alignments as described in Section 2. These modifications

affect mainly the values for nScore nScore

mismatch’

matehs NS COTE gy s ESCOT €y e, AN

eScore They are no longer constant, but depend on the variations that are

mismatch -
observed in the alignment of the different graph instances. E.g., the difference among
the continuous edge weight of an edge ¢’ of the consensus graph G’ and the respective
weight of the corresponding edge e from G is scored depending on the variance of the
former weight that was observed in the alignment that was used to calculate G'. If a
certain distance among two pseudocenters is strictly conserved in all binding pockets of
a functional family, it is also important that this distance is preserved exactly in G if GG
should be an additional member of this protein family. Otherwise (i.e. if the observed

variance of the weight was high), also a rather high deviation from the observed mean

should be tolerated in GG. For the continuous edge weights, the score

1
eScore,,aen = sig(cons(e’)) - (1 =2+ (o par(ery (dev) — 5)), (6)

was found to yield good results in our experiments, where cons(e’) is the degree of con-

15



servation of the respective edge ', var(e’) is the observed variance for ¢’ and ®,, ;2 is the
cumulative distribution function of the normal distribution with mean p and variance
0?. dev is the absolute value of the difference between the edge weights w(e) and w(e’).

sig(-) is the sigmoidal function

(7)

Figure 3 (a) shows the score obtained from (6) for different values of var(e’) and dev =
|lw(e) — w(e’)|. The strictness of the scoring system depends on the variance that was
observed while calculating the graph alignment A. The score (6) is a measure of how
many corresponding edges in the alignment A have a higher deviation from the mean
value w(e’) assuming a normal distribution (cf. Figure 3 (b)). The degree of conservation
of the edge ¢ also influences the score, as highly conserved edges should have a higher
impact on the overall score than less conserved ones. The sigmoidal function (7) will filter
out edges that exhibit a rather low degree of conservation (e.g., below 0.1). Furthermore,
it weights edges that show a rather high degree of conservation (e.g., above 0.9) as nearly
perfectly conserved. As the practical applications show, one often observes a high number
of edges exhibiting a rather small degree of conservation. These are filtered out because
it is in question whether they are actually relevant and discriminative for the respective
class under consideration. In contrast, if edges are detected corresponding to a very high
degree of conservation, one can expect that these edges would only be missing in the
remaining graph instances due to experimental uncertainties or inherent deficiencies in
our applied heuristics. Accordingly, they are considered as nearly perfectly conserved. In
consequence, the score assigned to each aligned edge receives a value in [0, 1] depending
on the degree of conservation of this edge and the deviation of its edge weight from the
mean value in the consensus graph. For the nodes, a similar score has been be defined
that takes the degree of conservation and the relative frequencies of the different node
labels into account. We therefore obtain a similarity score s for the graph G and the

consensus graph G’ that indicates how well the binding pocket represented by G fits into
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Figure 3: (a) The edge score eScore,, ..., according to (6) for different values of the
observed standard deviation o (i.e., y/var(e’)). A conservation degree cons(e’) of 1.0
is assumed. The x-axis shows the absolute value of the difference dev between w(e)
and w(e’), the y-axis the obtained score. If the observed variance was low, also the
scoring is very strict and even small deviations from the observed mean value are strongly
penalized. If the variance was instead comparably high, the scoring is also less strict and
higher deviations are tolerated. (b) In the case cons(e’) = 1, the edge score eScore,, ;.n
calculates the filled area in the normal distribution (shown as a density function). It
therefore measures how many of the edge weights in the dataset support the current edge
weight as they had a higher deviation.

the functional class described by G’. It is obtained by summing up all the individual

scores for the aligned edges and nodes.

4.2 Calculation of Discriminative Patterns

Most of the methods described in literature [29, 34, 21, 31| for the structural comparison
of protein active sites focus on features shared in common or present with high similarity
in the examined sites (cf. Section 1). A major advantage of the graph alignment ap-
proach is that it also captures dissimilarities using the same framework. E.g., if a certain
amino acid is mutated at a given position of a protein, this exchange can replace one
physicochemical property by another one. In a graph alignment, this replacement is cap-
tured by a mismatch of the assigned pseudocenters while the correspondence would be
lost completely in many other approaches. This advantage of graph alignments allows us

to identify discriminative features in related, yet distinct functional families of proteins
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in terms of their binding pockets.

Let A be a graph alignment for a set G = {G1(Vi, E1),...,Gn(V,, E,)} of graphs that

belong to two (or more) different classes, i.e.

o(Gr) =+ =c(Gi) # (Gip1) = -+ = c(Gy)

without loss of generality. Then, it is possible to analyze the influence of the structural
features of the graphs in G on the class membership. This can be done using a plethora
of different data analysis methods by deriving a “flat” feature-vector representation for
the graphs in G using the assignment among the nodes that is induced by the graph
alignment A. Assuming an arbitrary fixed ordering of the elements ay,...,a, € A, one

is able to derive a flat feature vector g; for all G; € G:

g = (I(t1.0), ..., 1(t,.0)), (8)

where

5 l(v) v#L
I(v) = ) (9)
1 v=L

and ¢;.7 denotes the ¢—th position of the vector ¢;. g; thus comprises all entries of all tuples
in the graph alignment A that correspond to the graph G;. It is a “flat” representation of
the structured object represented by G;. Nevertheless it has a direct structural meaning
as each entry of g; corresponds to a particular structural feature (i.e. node). It is therefore

straightforward to interpret the results obtained using standard methods for data mining.

E.g., if an appropriate method for data analysis such as decision tree induction or decision
rule induction identifies a certain position (i.e. feature, attribute) in the feature vectors
as discriminative among the considered classes, it is possible to map this information
back to a certain node in each of the aligned graphs by direct lookup in the alignment
A (cf. Figure 4 for an example). We aim at developing a descriptive model that is

able to extract and explain discriminative features among related families in an easily
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Figure 4: Textual representation of a simple graph alignment of graphs belonging to two
classes. The class labels are indicated in front of the rows. The classes are apparently very
similar as four nodes are perfectly conserved over all graphs. Yet, the last column contains
nodes with different labels. It is easy to see that this last column is perfectly correlated
with the class membership. A rule learning method would derive e.g., the decision rule
“IF col5 =" E” THEN label = 0 ELSE label = 1” to distinguish the two classes. As the
last column corresponds to a certain node in each of the considered graphs, it is easy
to map this rule back into the respective binding pockets and to identify discriminative
features or residues.

interpretable fashion and we do not want to solve a classification problem. Therefore, we
only consider data mining methods that generate such interpretable models. Nevertheless,
it is also possible to use the obtained models in a predictive way (i.e., for the classification
of unlabelled instances). The predictive model is derived from a multiple graph alignment
of the graph instances in the training set as described above. To classify new instances,
one adds these to the pre-calculated alignment containing the training examples. As
already mentioned in section 3.2, graph alignments can be constructed incrementally.
It is possible that new tuples have to be added to the alignment while inserting new
instances, but these tuples contain only dummy nodes in the positions that correspond
to entries of the training dataset as the original alignment already contained all nodes
of all instances of the training dataset by definition. Hence, the predictive model is not
(or at most trivially) affected through the extension of the alignment. Once the new
instances have been added to the graph alignment, feature vectors can be derived from

the alignment and the classification proceeds as before.

The ability to analyze automatically and efficiently also differences among related func-
tional (sub-)families is a key advantage of the graph alignment approach. It allows for
performing large-scale analyses of large protein families such as the serine and aspartyl
proteases or the protein kinases and to identify characteristic and discriminative patterns
for these families. This is an important prerequisite, e.g. for the design of novel inhibitors

with a high affinity and selectivity for a certain functional protein (sub-)family.
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5 Experimental Evaluation

5.1 Consensus Graphs

To examine the performance of our approach, the ENZYME classification database (Re-
lease 37) was used as an information source for the functional classification for proteins
[4, 28]. A set of ten diverse and highly populated enzyme families was selected (cf. Ta-
ble 2). For each of the families, graph alignments and consensus graphs were calculated
using the algorithms described in Section 3. A single pairwise comparison of two graph
descriptors could be performed within 1 — 2 seconds on average. An all-against-all com-
parison of a set of 100 binding pockets can therefore be performed within 3 hours on a
standard Linux computer.® The subsequent determination of the multiple alignment can

be performed within a few minutes.

The generated consensus graphs were finally used as prototypes to classify all 113,718
cavities of the entire Cavbase in a two-fold cross validation. The set of protein structures
belonging to each of the ten families was split randomly into two independent subsets.
The cavities corresponding to one subset were used to calculate a consensus graph which
was assessed subsequently by classifying the entries of the other subset and the remaining
Cavbase. As one protein structure can exhibit more than one putative binding pocket and
not all of these pockets must be related to a protein function, the obtained classification
results were mapped back on the protein structures. In other words, a protein was
considered as a member of a functional class if at least one of its cavities was found to

match with one of the respective classes.

Each graph descriptor in the dataset was aligned to each of the 10 consensus graphs and
scored as described in Section 4.1. Each comparison of one consensus graph against all
Cavbase entries took approximately 20 CPU-hours, depending on the size of the consensus
graph. Note that always the complete consensus graphs were used which contained in
several cases hundreds of nodes. Restricting the consensus graphs to nodes with a degree

of conservation beyond 0.25 or 0.5, a significant size reduction of the consensus graph and

SP-IV 2.80 GHz, 1024 MB RAM, Debian Linux
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thus of the computational complexity is achieved. The process can be easily parallelized
as all calculations are independent. For each consensus graph and each entry of the
dataset, a score s between 0 and the maximally possible score sy, for the respective
consensus graph is obtained. To decide whether a certain graph descriptor falls into the
functional class of the consensus graph, a threshold s, has to be adjusted. If the obtained
score exceeds beyond this threshold, the graph instance is classified as a member of the

class, otherwise it is discarded as a non-member.

To demonstrate rigorously that the derived classifiers are indeed able to separate positive
from negative graph instances, and an optimal threshold value can be assigned, ROC
(Receiver Operating Characteristic) curves [9] are shown for each of the 10 consensus
graphs in Figure 5. These curves depict the relative numbers of true and false positives
that are found considering different threshold values. In some of the cases, it is possible
to retrieve more than 90 percent of the true positives before the first false positive entry
is detected. In all cases, the resulting curves indicate convincing separation of graph
descriptors that correspond to members and non-members of the respective family. An
established figure-of-merit for the discriminative power of a particular classifier is the
area under the ROC curve [17]. While an optimal classifier would achieve a value of 1.0,

the examined classifiers yielded on average a very large area of 0.91 (cf. Table 2).

In general, using the fully automatically derived consensus graphs, it was possible to
identify most of the members of a protein family and related families. It has to be
regarded that the relevance of the generated consensus graphs depends on the structures
selected to calculate the initial alignment. Thus, it might be possible to improve the
results using carefully selected and unbiased subsets of the representative structures. In
cases of rather heterogeneous families, it might also be useful to calculate more than
just one prototype to better represent the respective families, e.g. in the case of kinase

structures corresponding to the active or inactive state.
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Figure 5: ROC (Receiver Operating Characteristic) curves of the 10 examined classifiers.
The numbers in the legend correspond to the EC-numbers of the respective enzyme family
(cf. Table 2). On the x-axis, the false positive ratio is plotted while the y-axis shows the
true positive ratio, each depending on the selected threshold value. In the ideal case, a
true positive ratio of 1.0 would correspond to a false positive ratio of 0.0. Yet in practice,
a trade-off exists between both ratios as it is not possible to choose a threshold value
such that all positive instances score above and all negative instances score below this
threshold. The optimal threshold value is typically defined by the point on the ROC curve
that is closest to the upper left corner. The area under the ROC curve is an established
measure for the performance of a classifier and the respective values are shown in Table
2.

AUC Full Dataset C-V AUC Split 1 ‘ C-V AUC Split 2 ‘

EC-Number ‘ Family Name ‘ No. of proteins No. of cavities

1.01.01.0001 Alcohol dehydrogenase 80 398 0.946 0.954 0.948
2.01.01.0045 Thymidylate synthase 105 460 0.989 0.977 0.978
2.05.01.0018 Glutathione transferase 148 456 0.764 0.784 0.720
2.06.01.0001 Aspartate transaminase 90 494 0.952 0.880 0.934
3.02.01.0001 Alpha-amylase 87 232 0.842 0.889 0.825
3.04.21.0004 Trypsin 329 442 0.840 0.855 0.937
3.04.23.0016 HIV-1 retropepsin 267 898 0.894 0.871 0.898
3.04.24.0027 Thermolysin 59 70 0.954 0.948 0.901
4.02.02.0001 Carbonate dehydratase 207 363 0.952 0.937 0.901
5.03.01.0005 Xylose isomerase 76 500 0.959 0.967 0.894

Table 2: Results of the experiments with the 10 examined enzyme families. For each of
the 10 families, the number of considered PDB entries and the number of hypothetical
binding pockets in these protein structures is shown. Additionally, the area under the
ROC curve (AUC) is shown as a measure for the performance of the obtained consensus
graph classifiers. The AUC was determined for consensus pockets determined from the
full set of cavities in a family and also in a two-fold cross validation to examine the
influence of overfitting.
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5.1.1 Discriminative Patterns

Trypsin and thrombin — two closely related proteins from the family of serine proteases
[10] — were selected to examine the power of the graph alignment concept to detect
patterns that discriminate both binding pockets. Thrombin is an important target for the
development of anticoagulants, whereas trypsin is an enzyme involved in gastrointestinal
digestion. To equip putative inhibitors of thrombin with the required selectivity it is

important to trace the structural differences between trypsin and thrombin.

A dataset of 111 binding pockets extracted from thrombin structures and 105 trypsin
pockets was composed. A multiple graph alignment was calculated for the graph rep-
resentations of these binding pockets, and 216 “flat” feature vectors were derived for
the dataset as described in Section 4.2. Each of the vectors contained 114 categorical
attributes (including one class label attribute). Note that each of these attributes cor-
responds directly to a particular node of the represented graph if it is not flagged as a

“dummy” node. The WEKA package [39] served to analyze the dataset.

The C4.5 algorithm [30] for decision tree induction was applied to the data set and
resulted in a (pruned) decision tree that contained only one inner node. Obviously,
it is sufficient to consider only one of the 113 attributes to classify all but one of the
cases correctly. A similar run using the rule learning algorithm RIPPER [12]| revealed
the same result. Closer analysis of the discriminating feature revealed that the selected
attribute corresponds to the aliphatic property of the alanine-190 residue, an amino acid
that is part of the S1-subpocket of thrombin and that is replaced by serine in trypsin
[14, 10]. The method was thus able to discover automatically a known structural difference
among the two classes under consideration.® Yet, as there are more relevant structural
differences between trypsin and thrombin, it was necessary to switch to another class of
methods for data analysis. Simplicity of the generated model is a key objective of most
machine learning approaches to reduce the risk of overfitting. Thus, if one attribute is

sufficient to achieve a satisfactory classification, any further attributes are not included

6To examine also the predictive accuracy of the obtained model — although not a central objective of
the method — a 10-fold cross validation experiment was performed and resulted in a classification rate
of 99.537 %.
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into the model. But, as the aim of our study is to reveal a comprehensive instead of a
minimal model, the different “columns” of the alignment were correlated with the class
membership vector. This was performed by constructing a vector for each “column”
of the alignment that contained an entry for each “row” of the alignment. The entry
was set to 1 if the respective entry of the alignment contained a non-dummy entry and
to 0 otherwise. Among the 113 attributes, 10 showed a Pearson correlation coefficient
above 0.7 with the class membership, three of them showing a correlation above 0.95.
As expected, the attribute corresponding to alanine 190, already selected by the data
mining algorithms mentioned above, showed the highest correlation (r = 0.99). Four
of the remaining attributes correspond to residues of the 60-loop, another important
structural difference between trypsin and thrombin. In the latter, it partially covers the
specificity pocket; however it is entirely missing in trypsin. The method was thus also able
to detect automatically two of the known differences among the considered classes [10].
A more detailed discussion of the obtained discriminative patterns is beyond the scope of
this paper. In the future, we plan to examine different important and highly populated
functional protein families and to study the structural differences among different sub-

families using the techniques described in this contribution.

6 Conclusions

Graph alignments were introduced as a novel concept for the analysis of protein active
sites. Using graph alignments, it is possible to detect conserved patterns in binding pock-
ets of proteins exhibiting a similar biochemical function. The method is very robust with
respect to noise as typically given evaluating experimental data. Furthermore, conforma-
tional flexibility of the examined proteins adds some additional blur to the input data.
Thus, it is not necessary that a pattern is fully present in all of the examined structures
to be detected. Actually, it is not even required that the entire pattern is contained in full
by one single structure as it can be composed by multiple occurrences in different struc-

tures. This is a major advantage compared to other existing approaches that attempt to
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derive conserved regions in protein active sites.

Additionally, the graph alignment approach, presented in this paper, does not solely focus
on conserved regions or similarities in the binding pockets. Instead, it also captures the
dissimilarities among the examined structures. Therefore, it is also possible to examine
differences across related protein families using our concept. It allows one to gain insights
into selectivity determining features among the proteins, which is a prerequisite for the
design of selective and safe drug molecules. The power to automatically detect structural
differences is another important contribution of the method. To detect such discriminative
structural elements in proteins, many established tools from data mining can be applied as
“flat” feature vectors for the protein binding pockets under investigation can be derived
and analyzed using standard techniques while maintaining the interpretability of the

obtained results.

An important feature of the graph alignment approach is the fact that a deduced align-
ment mirrors the data of a given input set of graph descriptors. Accordingly, if new
structures become available, one has to recalculate the graph alignment incorporating
novel entries. With respect to general validity of rules derived from empirical data one
might argue that this is a major drawback of the approach as the number of available
protein structures grows exponentially. However, our algorithms can recalculate graph
alignments incrementally in a very efficient way. Thus, the computational cost of adding
new protein structures is comparably low. Nevertheless, our analysis is already based on
a substantial subset of the PDB and should be representative. It was performed using

standard Linux computers in an acceptable amount of time.

Another potential drawback of the graph alignment approach is that it suggests only one
unique assignment across the nodes from different graphs. Possibly, other assignments
exist that would yield the same or only a slightly smaller score. Accordingly, is our
approach too restrictive and possibly neglects many possible assignments? We believe
that this is not the case. Firstly, alignments are also computed in sequence analysis,
and also there multiple alignments are possible for a given set of sequences. From an

application point of view, one can assume that across a family only a unique mapping
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of pseudocenters exists. This assumption is supported by the fact that in a binding
site a particular function, e.g. an elementary step of a chemical reaction, occurs that
requires with very small spatial variations a unique approach direction of the transformed
reagents. This pattern has to be conserved across a large variety of binding pockets.
Secondly, although typically a huge number of different close-to-optimal alignments exist
for a given set of graph descriptors, these alignments usually show a high similarity and
differ only by a few pseudocenter correspondences. Key residues of the binding pockets
are always assigned to each other and ambiguities usually affect only pseudocenters of
minor functional importance. Thus, it is reasonable to focus on one of these alignments
that is optimal with respect to the scoring function. This holds in particular as the
obtained results do not differ much from those suggested by alternative close-to-optimal
alignments. To closer examine the robustness of the best-scored alignment, one could

apply techniques similar to those used to calculate suboptimal sequence alignments [40].
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