
MGA-Toolbox Version 0.1

Tool for Aligning Multiple Graphs

Thomas Fober Marco Mernberger

{thomas, mernberger}@mathematik.uni-marburg.de

Philipps-University Marburg

Mathematics and Computer Science Department

Knowledge Engineering & Bioinformatics Group

35032 Marburg

Germany

2008 January, 24th

Contents

1 Introduction 1

1.1 Multiple Graph Alignment . 1
1.2 Algorithms . 2

2 Requirements and Installation 4

3 Usage 4

3.1 Program settings . 5
3.2 Parser for graphs . 6
3.3 Output . 7
3.4 Example . 7

A Problems and Solutions 8

B Implementation – An overview 9

B.1 Greedy heuristic . 9
B.2 Star alignment . 10
B.3 Evolutionary algorithm . 10

1 Introduction

1.1 Multiple Graph Alignment

Graphs have been widely used for modelling structured objects that are
difficult to model by other means. Especially in the field of bioinformat-
ics, graphs have been used for modeling chemical structures, proteins and
protein substructures as well as ligands that bind to them. Usually one is

1

interested in finding similarities between such molecules, for example to de-
tect chemical ligands that bind to the same proteins or proteins that share
similar functions.
Furthermore, graphs have been used beyond that field as a general means of
modeling structured objects, e.g. XML documents, text documents, hand-
written words, social networks or as object descriptors in images. Here, too,
a comparison of graphs is likewise interesting, for example one might be
interested in comparing hand-written texts, etc. Therefore a tool is needed
for the comparision of such objects. Although several approaches exists,
based on graph isomorphism, subgraph isomorphism and pattern recogni-
tion, most of them are limited to a pairwise comparision of graphs.
Our tool enables us to compare multiple graphs at once by calculating a mul-
tiple graph alignment. Therefore we are not limited to a pairwise compari-
son. A graph alignment in this respect is defined as a one-to-one mapping
of vertices of different graphs onto each other, in a way that the correspon-
dence of vertex labels as well as the mapping of edges with similiar distances
onto each other is maximized. Therefore we expect the graphs to be vertex-
labeled and edge weighted, where edge labels are interpreted as distance
values.
Compared to sequence alignments, graph alignments present a much greater
algorithmic challenge, as the vertices in a graph do not posess a natural or-
der, as is the case with sequences with a certain sequence order. Moreover,
a graph alignment tries to map the graphs in such a way that a maximum
of edge identity as well as label identity is achieved. Since these alignments
do not rely on exact matching techniques, inexact assignments of vertices to
each other as well as edges to each other are allowed, albeit at a cost.
We measure the quality of a given alignment by means of a scoring function,
in which we penalize edge mismatches and vertex mismatches separately and
reward edge and vertex matches by scoring constants. By adjusting these
scoring parameters, one is able to increase the influence of vertex labels and
decrease the influence of edges on the calculated alignment and vice versa.
Since edges should be
Since the number of possible mappings increases exponentially with the num-
ber of vertices in a graph, the task of finding the best possible alignment is
very complex and the MGA-Problem is NP-hard.

1.2 Algorithms

We have implemented two algorithms solving the MGA-Problem; an evolu-
tionary algorithm (EA) and a greedy heuristic. As showed in [3] the EA is
able to produce alignments of much higher quality, albeit at the cost of a con-
siderable increase of runtime. Therefore we recommend using the EA only
on small graphs with up to 100 vertices. As a compromise between quality
and runtime it is also possible to use a combination of greedy heuristic and

2

EA, called star-EA. This algorithm uses the EA to calculate pairwise align-
ments and aggregates them to a multiple one using the star-align heuristic.
Obviously this method is only usable on MGA problems with more than
two graphs.
The implementation of our algorithms is described in the appendix. Here
we want to give a brief introduction in the three mentioned algorithms:

EA: The representation of the EA is able to encode a multiple alignment
for m graphs. Unlike the algorithms described below the optimiza-
tion procedure can consider the whole problem at once. Ingenious
genetic operators, especially developed for the MGA problem are able
to construct an optimal alignment reliably. However MGA is a very
complex problem and the search-space grows exponentially with the
number of vertices and graphs. In addition, the underlying fitness-
function is based on a sum-of-pairs measure and its runtime grows
also with number of vertices and number of graphs. With some clever
tricks we could reduce the runtime for evaluation the fitness-function
of a mutiple alignment dramatically but with very large number of
vertices and graphs the runtime for optimization does still explode.
Then EA in combination with star alignment can be used.

EA + Star alignment: This variation uses the EA, too, with the differ-
ence that only pairwise alignments are calculated. The MGA problem
with m graphs is decomposed into 1

2
m · (m + 1) pairwise alignments

that are solved by EA. A heuristic called star alignment merges these
O(m2) pairwise alignments to a multiple one. We have shown [3]
that this procedure leads to a significant speed-up of the optimiza-
tion process at the cost of a slight decline in fitness and quality of the
alignment. As mentioned above the runtime still grows exponentially
with the number of vertices so that there are cases in which we have
to replace the EA by a simple greedy heuristic.

Greedy + Star alignment: This procedure is similar to the EA + Star
alignment method and simply replaces the EA by a greedy heuristic.
This heuristic quickly solves the subgraph-isomorphism problem in a
first step producing a seed-solution of the pairwise graph alignment
problem. In a second step, this seed-solution is greedily extended to
an alignment by adding the remaining vertices to the current solution.
Once again we have to decompose the MGA problem as described
above and use the star alignment heuristic. In comparison to all other
described approaches, this method is the quickest one at the expense
of a reduced quality of the results regarding fitness and quality.

3

2 Requirements and Installation

Our program is implemented in Java 1.6. Since Java is plattform indepen-
dent, the MGA-Tool is runable on each operating system. You just have to
install the Java interpreter and to copy the MGA-Tool file mga.jar into any
folder. The latest version of the MGA-Tool is available at:

www.uni-marburg.de/fb12/kebi/research/software/ .

3 Usage

The MGA-Tool can be started by typing java -jar MGA.jar plus addi-
tional arguments in a command window with correct path.
java -jar MGA.jar -? returns a list with all possible settings that are de-
scribed in the following section in detail.

usage: MGA [options] [method] inputdirectory {inputdirectory2}

outputdirectory {parameter}

OPTIONS:

’-?’: Help, displays this text.

’-p’: calculate pairwise alignments. 2 input

directories needed.

All files in first directory are aligned

with all files in second directory

’-m’: calculate multiple alignment. 1 input directory needed.

All files in directory are aligned with each other

METHOD:

’EA’: Use Evolutionary Algorithm for calculation.

’EA+S’: Use Evolutionary Algorithm + star alignment for calculation.

’GS+S’: Use Greedy Strategy + star alignment for calculation.

PARAMETER:

’stallGen:x’ : stop EA after x stall generations. Default: x = infinity.

’stallTime:x’ : stop EA after x stall seconds. Default: x = infinity.

’time:x’ : stop EA after x seconds. Default: x = infinity.

’gen:x’ : stop EA after x generations. Default: x = infinity.

’fitness:x’ : stop EA at a fitness of x. Default: x = infinity.

’mu:x’ : population size. Default: x = 4.

’nu:x’ : selective pressure. Default: x = 20.

’delta:x’ : cutoff value for edge distances. Default: x = 11.

’nmm:x’ : penalty for vertex mismatches. Default: x = -5.

’nm:x’ : bonus for vertex matches. Default: x = 1.

4

’d:x’ : penalty for dummy matches. Default: x = -2.5.

’emm:x’ : penalty for edge mismatches. Default: x = -0.2.

’em:x’ : bonus for edge matches. Default: x = 0.1.

’eps:x’ : tolerance threshold for edge length differences.

Default: x = 0.2.

3.1 Program settings

First the user has to specify if a pairwise alignment or a multiple alignment
should be calculated. This is done with the parameter -p or -m respectively.
The former requires two input directories. All graphs in the first directory
are (pairwise) aligned with the graphs in the second directory. The results
are stored in the specified output directory. The latter requires one input
directory. All graphs in this directory are aligned and the resulting multiple
alignment is stored in the output directory.
Before specifying the input- and output directories the calculation method
must be choosen. There are three methods available in our toolbox:

-EA EA for calculating the multiple graph alignment

-EA+S EA for calculation of O(m2) pairwise alignments and the susequent
merging of these by the star-align procedure.

-GS+S Greedy heuristic for calculation of O(m2) pairwise alignments and
the susequent merging of these by the star-align procedure.

Typically the upper needs the most time for calculation but is the exactest
method. The last procedure is the fastest one but only a heuristic which
cannot guarantee the optimal solution.
If EA oder EA+S is used for solving the MGA problem, EA-typical param-
eters can be specified. The population size µ can be set by mu:µ a selective
pressure of ν analogous by nu:ν. Other EA typical parameter are not set-
table since we have performed some parameter tuning [1] that indicated that
these are the only parameters that have influence on runtime and result. The
parameter tuning indicates also recommended values. If mu and nu are not
set by user than this recommended values are used during optimization.
The EA further needs one or several termination criteria. Stall generations

are the generations in which no improvement occurs. This generations are a
good indicator, for the progress of the optimization. Analogous it is possible
to specify stall time as termination criteria. If the optimal fitness is known
we can terminate, if this fitness is reached. Termination Criteria not based
on progress are time and generations. It the maximum time or generations
respectively are reached the optimization procedure is leaved. All these pa-
rameters can be set by parameter:value syntax as described above.
If GS+S is used as solver the described parameters are not required because
greedy and star-alignment heuristic are parameterless.

5

Our fitness function is also parameterisable: As described in section 1.1 we
can specify constants for match nm or mismatch nmm of assigned vertices as
well as for edges (em and emm respectively). If the graphs differ in respect
to their size (or if it is better to assign a vertex of one graph to no vertex of
another graph) we match some vertices onto dummy vertices which is penal-
ized by a constant d. Note that we are solving a maximization problem. So
match constants should be larger than mismatch and dummy constants. Es-
pecially for biological applications we obtain a complete graph if we encode
distances between vertices as edges with associated label. Sometimes these
graphs contain to much information so that it has advantages to remove all
edges with higher label than δ. This is done by setting the constant δ to a
specific distance threshold. As edge labels are interpreted as distances, one
can specify a tolerance threshold eps that sets the maximum for the differ-
ence in edge lengths, up to which the edges are still counted as a match. All
here described settings are realized by parameter:value syntax.

3.2 Parser for graphs

The MGA Toolbox can distinguish between mol2, pseudoc and rlbcoor for-
mat[4]. Files ending with mol2, pseudoc.txt or rlbcoor are automatically
parsed by their belonging parser. Additionally we have implemented a gen-
eral parser reading graphs in a simple format based on matlab syntax. This
format stores a graph in a simple text file ending with .graph (not with
txt!) and containing exact two lines. The first line encodes the vertex-labels

A B

C

A

25

1515

18

A,B,C,A,

-,18,15,-;18,-,15,-;15,15,-,25;-,-,25,-

Figure 1: Example for illustrating the .graph-format

separated by comma; in the second line each row of the adjacency matrix
is separated by semicolon, entries in the row by comma. Figure 1 shows a

6

simple vertex-labeled and edge-weighted graph with corresponding encoding
in graph-format (”-” indicate no edge).

3.3 Output

The calculated alignments are stored in a mga file. This file is human
readable and can be opened by a text editor. The assigned name of this file
is based on the name of the graphs that are aligned and is a composition of
the first and the second graph separated with ” ”. In the multiple case,
the result file is named by the first input graph plus the keyword multiple.
The structure is as follows:

1. name of the aligned graphs

2. number of graphs

3. calculation method

4. time required for calculation

5. score of alignment

6. required generations (if EA was used for solving the MGA problem)

7. reason for stopping (interesting if more than one criteria was used)

8. used scoring parameters

9. alignment matrix: each column codes an assignment of single vertices
indices out of each graph, if a −1 exists in cell (i, j) we use a dummy
vertex in graph i and assignment-column j instead of a vertex out of
graph i.

10. for each graph based on alignment ordering:

(a) labels: vertex labels

(b) distance: adjacency matrix

3.4 Example

We have two classes of graphs in two orders F1 and F2 and want to align
each graph out of each order pairwise and store the result in the folder res.
As method we want to use an EA to achieve best results. The stopping
criterion is 500 stall generations and we want to use standard parameters.
The command is like follows:

java -jar MGA.jar -p EA /home/thomas/F1 /home/thomas/F2 /home/thomas/res stallGen:500

7

A Problems and Solutions

Problem Reason / Solution

The program does not stop.

Check the parameters you have given.
If you specified stop criteria that can-
not possibly be met (such as a certain
fitness value) the program would not
stop.

The program does not use the
right files for the alignment
calculation.

Make sure you have specified the input
and output folders in the right order.

The program breaks with a
”no such directory error”.

Make sure your directories exist and be
sure to specify two input directories for
the pairwise case. These can of course
be the same but you have to specify it
two times.

My parameters are ok, but the
program still does not seem to
stop.

MGA is a very complex problem that
needs time to be solved. If you use
the EA change the stopping criteria or
switch to the greedy heuristic to save
time.

The calulated alignment is ob-
viously not optimal.

If you used any approach other than
EA, the program cannot guarantee to
reach a global optimum. If you used
the EA and it is still not optimal, try
again and allow a longer runtime by
changing the stop criteria.

The program did calculate an
alignment, but it is not what
we expected.

Be aware, that the scoring parameters
have a strong impact on the definition
of a ”good” alignment. By varying
these, one can emphasize the impor-
tance of vertex labels or edge weights
respectively. E.g. if the alignments
show perfect vertex label assignments
but completely neglect structural simi-
larities, try to increase match boni for
edges or lower match boni for vertices.

How can the program be
stopped?

Use your operating system to kill the
process (i.e. ’kill’ on UNIX-System or
Strg-c on Windows-Systems).

I can not parse my graphs.
The files storing the graphs does not
end with ’.mol2’, ’.pseudoc.txt’, ’.rlb-
coor’ or ’.graph’.

8

Problem Reason / Solution

My graph-file has the correct
ending but parsing is not pos-
sible.

1. Your file does not use the stan-
dard syntax defined in [4]. Trans-
late the file into the ’.graph’ for-
mat (cf. section 3.2) and parse it
again.

2. Windows Systems hide well-
known endings of a file, so
that it is possible, that i.e. a
file test.mol2.txt is displayed as
test.mol2.

The program breaks with a
Null Pointer Exception.

Options, Method, Directories, Param-
eters are given in the false order dur-
ing calling the program out of the com-
mand window.

Is a graphical user interface
available?

No!

If you have any problems or comments concerning the algorithm or the
implementation feel free to contact us.

B Implementation – An overview

B.1 Greedy heuristic

The greedy heuristic uses the Bron-Kerbosh-Algorithm for the calculation
of a seed-solution for a pairwise alignment. Here, vertices consist of tuples
containing one vertex from graph 1 and one vertex from graph 2. Let G1 =
(V1, E1) be graph one and G2 = (V2, E2) be graph two. For all vi ∈ V1 for
all vj ∈ V2 the tuple (vi, vj) is added to the productgraph, if both vertices
have the same label. An edge is drawn between two product vertices, if
the corresponding vertices are connected in both graphs or not connected in
both graphs.
Then a clique algorithm performs a search of the first 100 cliques in the
graph and sets the largest clique as the seed-solution. The algorithm then
extends the solution greedily, in a way that the vertex tuple is added to
the seed-solution that has the largest number of neighbours inside the seed
solution. This is done until all remaining vertices are added to the solution.
In the multiple case, all possible pairwise alignments are calculated and
subsequently merged via a star-alignment merging algorithm.

9

B.2 Star alignment

The star align merging algorithm merges a number of pairwise alignments
to one multiple alignment. For a given set of graphs all pairwise alignments
are calculated, either by the greedy algorithm (greedy approach) or by the
EA (star-EA). We subsequently calculate a multiple alignment by using one
graph as a pivot graph and align all other graphs as calculated in the pairwise
alignments. For each vertex in the pivot graph, the corresponding matched
vertex in the particular pairwise alignment is mapped onto it. If dummy
vertices occur, they will be mapped onto dummies in the corresponding pair-
wise alignment. This is done for each pairwise alignment in which the pivot
graph is aligned with another graph, starting with the biggest in respect to
the number of vertex entries. If eventually an alignment is added that has a
shorter length, the remaining positions are filled with dummy vertices. As
it is unclear, which graph is suited best as a pivot graph, we try each graph
as a pivot graph and pick the multiple alignment yielding the highest score.

B.3 Evolutionary algorithm

The EA encodes the MGA problem as m × n matrix, with m is number
of graphs and n is a variable. We use ES typical operators [2] for mating-
selection and selection where for the selection only plus-selection is used. As
termination criteria we have implemented stall-generations, stall-time, time,
generations and fitness which are realized as simple if-conditions.
The initialization is realized as follows: We determine the number of ver-
tices in the largest graph maxL and set the genome-length n to maxL + 1.
Now a m × n matrix is created and for each row a random permutation of
0 to maxL is generated. Obviously if any of the graphs does not contain
enough vertices, the remaining cells (i, j) are set to ”-1” which indicates a
dummy-vertex.
For mutation we use a very simple mechanism that selects two cells in the
same row and swaps them. We have also implemented much more complex
operators (i.e. using a self-adaptation mechanism) – but, experimental re-
sults have shows that a simple mutation performs much better.
The recombination is realized for ρ Individuals. So it is possible to switch
off the recombination by set ρ to one. Once again experimental results have
shown that recombination should be turned on and ρ set to 2. The recombi-
nation operator takes two uniformly randomly choosen parental individuals,
cuts them on a uniformly randomly choosen row and exchanges their in
this way created blocks. Note, that alignment indices are not ordered in the
alignment, so a simple merging does not show the desired effect of improving
fitness. Therefore we use the row on which the split occours as pivot-row to
ensure the right order.
A genome-length adaptation mechanism ensures that we work always on a

10

optimal genome length. It is clear, that a too short genome-length can result
in a not optimal alignment, on the other hand, a too large genome-length
enlarges the search-space enormously and slows down the optimization pro-
cess. Another advantage is that the genome-length must not be specified
by the user. We ensure (cf. initialization) that individuals always carry one
dummy-column. Such a dummy-column, if dummies are required, will be
integrated in the alignment. Because this integration needs time we check
with small probability the number of dummy-columns. Three cases can
occour:

1. We have exactly one dummy-column: Then nothing has to be done.

2. We have k > 1 dummy-columns: We can delete k − 1 of them, since
we have a clue, that we deal with to much dummys.

3. We have no dummy-columns: All dummys are in use, so that we have
to add a new dummy-column.

At least we want to mention that we use the sum-of-pairs scoring scheme
to evaluate individuals. This scoring scheme has the disadvantage that its
calculation needs time which increase with number of vertices as well as
number of graphs. Therefore we use two techniques that allow us to decrease
the computational effort. First we calculate for each column a histogram of
vertex-labels in linear time. With help of a simple arithmetical expression we
can calculate the score of the column in constant time. Overall this results in
a reduction from O(m2) to O(m). A similar trick is used for decreasing the
runtime for the calculation of the edge-score. Edges are treated as match if
their distance is less than ǫ. To check an assignment of edges we once again
need O(m2) time. By sorting the edges according to their length we could
decrease the time to O(m · log(m)).

References

[1] Thomas Bartz-Beielstein, 2006: Experimental Research in Evolutionary
Computation. The New Experimentalism, Springer, Berlin

[2] Hans-Georg Beyer, Hans-Paul Schwefel, 2002: Evolution strategies – A
comprehensive introduction, Journal Natural Computing, Issue Volume
1, Number 1, Springer Berlin, ISSN 1567-7818

[3] Thomas Fober, Eyke Hüllermeier, Marco Mernberger, 2007: Evolu-
tionary Construction of Multiple Graph Alignments for the Structural
Analysis of Biomolecules, Proceedings, 17. Workshop Computational
Intelligence, Bommerholz

[4] Johann Gasteiger, Thomas Engel, 2003: Chemoinformatics, Wiley-
VCH, Weinheim

11

