
Chapter S:III

III. Informed Search
❑ Best-First Search Basics
❑ Best-First Search Algorithms
❑ Cost Functions for State-Space Graphs
❑ Evaluation of State-Space Graphs
❑ Algorithm A*

❑ BF* Variants
❑ Hybrid Strategies

❑ Best-First Search for AND-OR Graphs
❑ Relation between GBF and BF
❑ Cost Functions for AND-OR Graphs
❑ Evaluation of AND-OR Graphs

S:III-1 Informed Search © Stein/Lettmann/Hagen 1998-2021

Best-First Search Basics

“To enhance the performance of AI’s programs, knowledge [about the
problem domain, which enables us to guide search into promising
directions] is the power.”

[Feigenbaum 1980]

S:III-2 Informed Search © Stein/Lettmann/Hagen 1998-2021

Best-First Search

“To enhance the performance of AI’s programs, knowledge [about the
problem domain, which enables us to guide search into promising
directions] is the power.”

[Feigenbaum 1980]

S:III-3 Informed Search © Stein/Lettmann/Hagen 1998-2021

Best-First Search

“To enhance the performance of AI’s programs, knowledge [about the
problem domain, which enables us to guide search into promising
directions] is the power.”

[Feigenbaum 1980]

Examples for heuristic functions [
:::
S:I

:::::::::::
Examples

::::
for

::::::::
Search

:::::::::::
Problems] :

❑ 8-Queens problem. Maximize h1, the number of unattacked cells.

❑ 8-Puzzle problem. Minimize h1, the number of non-matching tiles.

Knowledge on how to achieve this (Maximize. . . , Minimize. . .) is beyond that which
is built into the state and operator definitions.

S:III-4 Informed Search © Stein/Lettmann/Hagen 1998-2021

https://cs.uni-paderborn.de/fileadmin/informatik/fg/is/Teaching/slides-le/search/unit-en-search-introduction.pdf

Best-First Search Basics

“To enhance the performance of AI’s programs, knowledge [about the
problem domain, which enables us to guide search into promising
directions] is the power.”

[Feigenbaum 1980]

Examples for heuristic functions [
:::
S:I

:::::::::::
Examples

::::
for

::::::::
Search

:::::::::::
Problems] :

❑ 8-Queens problem. Maximize h1, the number of unattacked cells.

❑ 8-Puzzle problem. Minimize h1, the number of non-matching tiles.

Knowledge on how to achieve this (Maximize. . . , Minimize. . .) is beyond that which
is built into the state and operator definitions.

Where is heuristic knowledge employed in the formalism of systematic search?

❑ Greedy Search. Move into the direction of a most promising successor n′ of
the current node.

❑ Best-First Search. Move into the direction of a most promising node n,
where n is chosen among all nodes encountered so far.

S:III-5 Informed Search © Stein/Lettmann/Hagen 1998-2021

https://cs.uni-paderborn.de/fileadmin/informatik/fg/is/Teaching/slides-le/search/unit-en-search-introduction.pdf

Best-First Search Basics

“The promise of a node is estimated numerically by a heuristic
evaluation function f (n) which, in general, may depend on the
description of n, the description of the goal, the information gathered by
the search up to that point, and most important, on any extra knowledge
about the problem domain.”

[Pearl 1984]

S:III-6 Informed Search © Stein/Lettmann/Hagen 1998-2021

Best-First Search Basics

“The promise of a node is estimated numerically by a heuristic
evaluation function f (n) which, in general, may depend on the
description of n, the description of the goal, the information gathered by
the search up to that point, and most important, on any extra knowledge
about the problem domain.”

[Pearl 1984]

The evaluation function f may depend on

1. evaluation of the state information given by n,

2. estimates of the complexity of the remaining problem at n in relation to Γ,

3. evaluations of the explored path to n in the search space graph G,

4. domain specific problem solving knowledge K about G.

f = f (n,Γ, G,K)

Objective is to quantify for a generated, but yet unexpanded node n its potential of
guiding the search into a desired direction.
S:III-7 Informed Search © Stein/Lettmann/Hagen 1998-2021

Remarks:

❑ Node n represents a solution base. Therefore, n gives access to information about a path
from s to the state represented by n.

❑ The remaining problem is the problem of determining a solution path for the state in G given
by node n. Using such path as a continuation of the solution base given by n, a solution path
for s is given. The complexity estimation of the remaining problem is beyond the information
encoded in nodes and edges.

❑ Knowing that G is Euclidean is an example for domain specific problem solving knowledge.
Euclidean distances can be used for estimating remaining path length.

❑ Evaluation functions are domain dependent. Therefore, these functions (or parts of them) will
be provided to search algorithms as parameters.

❑ We could think of doing even more: An evaluation of a solution base by f could also depend
on the explored part of the search space graph G, e.g., the emphasis on specific knowledge
in the computation of f could be changed thereby. However, such a dependence would
require an update of computed f -values (highly inefficient) each time the explored part of G
changes.

S:III-8 Informed Search © Stein/Lettmann/Hagen 1998-2021

Best-First Search Basics
Generic Schema for Best-First Algorithms

... from a solution-base-oriented perspective:

1. Initialize a solution base storage.

2. Loop.

(a) Select a most promising solution base using an evaluation function f .

(b) Expand the only unexpanded node in the solution base.

(c) Extend the solution base by one successor node at a time and save it as a
new candidate.

(d) Determine whether a solution path has been found.

Usage:

❑ Node expansion is used as basic step.

❑ Best-First Algorithms are informed versions of
::::::::::::::
Basic_OR.

S:III-9 Informed Search © Stein/Lettmann/Hagen 1998-2021

https://cs.uni-paderborn.de/fileadmin/informatik/fg/is/Teaching/slides-le/search/unit-en-basic-search1.pdf#algorithm-basic-or

Remarks:

❑ The schema is further extended by termination tests for failure and success.

❑ The job of the evaluation function is to make two solution bases comparable and hence to
provide an order on them.

❑ Best-first strategies differ in the evaluation functions they use. Placing restrictions on the
computation of these functions will establish a taxonomy of best-first algorithms.

❑ Even when considering constraint satisfaction problems it makes sense to use best-first
algorithms. The paradigm "Small is quick!" follows the idea that low cost values will be
assigned to solutions with simple structure and that simple structures can be established in a
few steps, i.e., in short time.

S:III-10 Informed Search © Stein/Lettmann/Hagen 1998-2021

Best-First Search Algorithms
Notation for Evaluation Functions

❑ Evaluation functions f are specifically designed for a state-space G.

This dependency is usually clear from the context. If not, we will use different names f, f ′, . . .

to distinguish between evaluation functions for different state spaces.

❑ An evaluation function f for G uses information on a solution base P for some state s in G (a
path in G from s to some other state s′, the tip-node of the solution base) and knowledge
about G.

f(P) From a state-space graph perspective, function f must have a path parameters P that
defines a solution base. As f is specific for G no further information is needed.

f(n) From a back-pointer structure oriented perspective, it is enough to provide a
:::::::
node n as

argument of f . The back-pointer path defines the solution base to consider.

❑ In property definitions for f we take a back-pointer perspective although f should be defined
as function on paths of G.

Nodes and back-pointer paths have to be seen as part of any back-pointer structure that is
theoretically constructible and meaningful. These structures are NOT restricted to be
back-pointer structures produced by some algorithm at some point in time.

"For all nodes n . . ." therefore has the same meaning as "For all solution bases P for s . . .".

S:III-11 Informed Search © Stein/Lettmann/Hagen 1998-2021

https://cs.uni-paderborn.de/fileadmin/informatik/fg/is/Teaching/slides-le/search/unit-en-basic-search1.pdf#node-semantics

Best-First Search Algorithms
Notation for Evaluation Functions (continued)

Definition 20 (Evaluation Function f)

Let G be state-space graph.

An evaluation function f is a function that assigns values f (n) in an ordered set to
paths P in G, where paths P are given as back-pointer paths of nodes n.

❑ We use the extended real numbers R = R ∪ {−∞,+∞} and the ≤-relation as ordered set.

❑ Evaluation functions f used in algorithm BF is designed for a specific state-space G. f is,
therefore, highly domain dependent.

❑ Algorithms will usually consider only paths starting in s and states on such paths that are
available in its back-pointer structure at some point in time. These values will be denoted
by f(n) for some node n.

S:III-12 Informed Search © Stein/Lettmann/Hagen 1998-2021

Best-First Search Algorithms
Basic Principles for an Algorithmization of Best-First Search

Prop1(G) Required Properties of G for Best-First Search

1. G has Prop0(G)
:::::::::::::::
properties.

2. Evaluation function f is defined for G and assigns cost values to paths in G.

3. f is computable.

4. When f evaluates a solution bases Ps−n, the computed value does not
depend on the time of computation.

5. When f evaluates a solution bases Ps−n, f estimates optimum cost of solution
paths that have Ps−n as initial part.

6. A most promising solution base has a minimum f -value in a candidate set.

Task

❑ Determine a
:::::::::
solution

::::::::
paths for s in G.

Algorithmization:

❑ A most promising solution base is searched among all solution bases currently maintained by
an algorithm.

S:III-13 Informed Search © Stein/Lettmann/Hagen 1998-2021

https://cs.uni-paderborn.de/fileadmin/informatik/fg/is/Teaching/slides-le/search/unit-en-basic-search1.pdf#search-space-prop-0
https://cs.uni-paderborn.de/fileadmin/informatik/fg/is/Teaching/slides-le/search/unit-en-basic-search1.pdf#solution-path-or-graph

Remarks:

❑ Best-first algorithms for state-space graphs are variants of algorithm
:::::::::::::
Basic-OR. So, the

solution bases Ps−n under consideration are defined by the states and back-pointers stored
with the nodes in OPEN or CLOSED.

❑ If a dead-end recognition ⊥ (n) is available, no solution base will be considered that contains
an inner node labeled “unsolvable” using ⊥ (n). A dead end recognition ⊥ (.) can be
integrated in f by setting f(n) = ∞ if ⊥ (n) is true.

❑ Usually, the evaluation function f(n) is based on a heuristic h(n).

h(n) estimates the optimum cost of a solution path for the rest problem associated with a
node n. Ideally, h(n) should consider the probability of the solvability of the problem at node n.

S:III-14 Informed Search © Stein/Lettmann/Hagen 1998-2021

https://cs.uni-paderborn.de/fileadmin/informatik/fg/is/Teaching/slides-le/search/unit-en-basic-search1.pdf#algorithm-basic-ors

Best-First Search Algorithms
Algorithm: Basic-BF (Compare

:::::
BFS. BF, Basic-BF∗.)

Input: s. Start node representing the initial state (problem) in G.
successors(n). Returns new instances of nodes for the successor states in G.
⋆(n). Predicate that is True if n represents a goal state in G.
constraints(n). Predicate that is True if path repr. by n satisfies solution constraints.
f(n). Evaluation function (cost) for the solution base in G represented by n.

Output: A node γ representing a solution path for s in G or the symbol Fail .

Basic-BF(s, successors, ⋆, constraints, f) // A deterministic variant of
:::::::::::::
Basic-OR.

1. s.parent = null; add(s, OPEN, f(s)); // Store s on f-sorted OPEN.

2. LOOP

3. IF (OPEN == ∅) THEN RETURN(Fail);

4. n = min(OPEN, f); // Find most promising (cheapest) solution base.
remove(n, OPEN); add(n, CLOSED);

5. FOREACH n′ IN successors(n) DO // Expand n.
n′.parent = n;
IF ⋆(n′) THEN
IF constraints(n′) THEN RETURN(n′);

add(n′, OPEN, f(n′)); // Store n′ on f-sorted OPEN.
ENDDO

6. ENDLOOP

S:III-15 Informed Search © Stein/Lettmann/Hagen 1998-2021

https://cs.uni-paderborn.de/fileadmin/informatik/fg/is/Teaching/slides-le/search/unit-en-basic-search1.pdf#algorithm-bfs
https://cs.uni-paderborn.de/fileadmin/informatik/fg/is/Teaching/slides-le/search/unit-en-basic-search1.pdf#algorithm-basic-ors

Remarks:

❑ Operationalization of best-first search:
The function add(n, OPEN, f(n)) stores a node n according to f(n) in the underlying data
structure of the OPEN list. Using a sorted tree (a heap), a node with the minimum f -value is
found in logarithmic (constant) time. [

:::::::
OPEN

::::
list

::
in

::::::
DFS] [

:::::::
OPEN

::::
list

::
in

::::::
BFS]

❑ Since f -values do not change over time, they can be stored with the nodes once computed.

❑ In all the following algorithms we can make use of dead-end functions ⊥ (n).

❑ In addition, memory consumption can be reduced by using cleanup_closed in the case of
nodes without successors. To save room, we will not include these parts in the pseudocode.

S:III-16 Informed Search © Stein/Lettmann/Hagen 1998-2021

https://cs.uni-paderborn.de/fileadmin/informatik/fg/is/Teaching/slides-le/search/unit-en-basic-search2.pdf#remarks-dfs
https://cs.uni-paderborn.de/fileadmin/informatik/fg/is/Teaching/slides-le/search/unit-en-basic-search2.pdf#remarks-bfs

Best-First Search Algorithms
Uniform-Cost Search (UCS) as Variant of Basic-BF

Setting:

❑ The search space graph G contains several solution paths.
❑ f assigns cost values to solution bases that do not include future cost for

extending a solution base to a solution path:
f (n) = cost of path Ps−n

Task:

❑ Determine a cheapest path from s to some goal γ ∈ Γ.

Necessary Prerequisite:

❑ The cost of a solution base is a lower bound for the cheapest solution cost
that can be achieved by completing the solution base.

➜ UCS will search G in layers of (nearly) equal cost and
UCS is complete, if G with Prop0(G) is finite + cycle-free, and
UCS will – sometimes – find optimum solution paths in this case.

S:III-17 Informed Search © Stein/Lettmann/Hagen 1998-2021

Remarks:

❑ Uniform-cost search is also called cheapest-first search.

❑ A specific cost concept is to assign cost values to edges in search space graphs. A path’s
cost can be calculated as the sum or as the maximum of the cost values of its edges.
If edge cost values are limited to non-negative numbers, the path cost of a solution base is an
optimistic estimate of a cheapest solution path cost achievable by continuing that solution
base.

❑ Depending on the state-space, the last step to a goal node could be quite expensive. Since
delayed termination is not implemented, UCS immediately terminates when finding such a
goal node, perhaps returning a suboptimal solution.

❑ If we have no means to calculate cost values for solution bases or if the cost of a solution
base not guaranteed to be a lower bound for the cheapest solution cost that can be achieved
by completing the solution base, the algorithm can surely know a minimum cost solution path,
only if the set of solution bases in OPEN is exhausted.

S:III-18 Informed Search © Stein/Lettmann/Hagen 1998-2021

Best-First Search Algorithms
Example: Uniform-Cost Search for Optimization

Determine the minimum column sum of a matrix:

s

8 3 6 7

8 3 6 7

6 5 9 8

5 3 7 8

1 2 4 6

S:III-19 Informed Search © Stein/Lettmann/Hagen 1998-2021

Best-First Search Algorithms
Example: Uniform-Cost Search for Optimization

Determine the minimum column sum of a matrix:

s

8 3 6 7

8 3 6 7

6 5 9 8

5 3 7 8

1 2 4 6

Comparison of UCS (left) and DFS (right):

8 3 6 7

14 8 15 15

11

13

s

8

6

3 6 7

5 9 8

3

2

s

6

5

1

5 9 8

3

2

1320

15 15

8 3 6 7

edge cost
solution base cost

6 (black)
6 (blue)

S:III-20 Informed Search © Stein/Lettmann/Hagen 1998-2021

Best-First Search Algorithms
Uniform-Cost Search is an uninformed (systematic) search strategy.

Uniform-cost search characteristics:

❑ Node expansion happens in levels of equal costs:

A node n with f (n) = cost(n) will not be expanded as long as a non-expanded
node n′ with f (n′) = cost(n′) < cost(n) = f (n) resides on the OPEN list.

≈ UCS can be seen as application of the
:::::
BFS strategy to solve optimization

problems (using cost instead of depth).

≈ BFS can be seen as a UCS variant using f (n) = depth(n).
DFS can be seen as a UCS variant using f (n) = −depth(n).

❑ The optimistic cost estimation is crucial also for the correctness of the
Uniform-Cost Search algorithm:
If the cheapest solution cost that can be achieved by completing the solution
base is overestimated we might miss an optimum cost solution path.

S:III-21 Informed Search © Stein/Lettmann/Hagen 1998-2021

https://cs.uni-paderborn.de/fileadmin/informatik/fg/is/Teaching/slides-le/search/unit-en-basic-search2.pdf#algorithm-bfs-spec

Best-First Search Algorithms
Delayed Termination: Basic-BF for Optimization

In general, the first solution found by algorithm Basic-BF may not be optimum with
respect to the evaluation function f .

Important preconditions for (provably) finding optimum solution paths:

1. The cost estimate underlying f must be optimistic, i.e., underestimating costs
or overestimating merits.

In particular, the true cost fPs−γ
(γ) of a cheapest solution path Ps−γ extending a solution base

Ps−n exceeds its f -value: fPs−γ
(γ) ≥ fPs−n

(n) (➜ domain-dependent).

2. The termination in case of success (⋆(n) = True) must be delayed.

In particular, there is no termination test when reaching a node, but each time when choosing

a node from the OPEN list (➜ easily implemented).

➜ Algorithms using delayed termination are indicated by a star (*),
Basic-BF becomes Basic-BF*.

S:III-22 Informed Search © Stein/Lettmann/Hagen 1998-2021

Best-First Search Algorithms
Algorithm: Basic-BF* (Compare BF∗.)
Input: s. Start node representing the initial state (problem) in G.

successors(n). Returns new instances of nodes for the successor states in G.
⋆(n). Predicate that is True if n represents a goal state in G.
f(n). Evaluation function (cost) for the solution base in G represented by n.

Output: A node γ representing an (optimum) solution path for s in G or the symbol Fail .

Basic-BF∗(s, successors, ⋆, f) // A delayed termination variant of Basic-BF.

1. s.parent = null; add(s, OPEN, f(s));
2. LOOP

3. IF (OPEN == ∅) THEN RETURN(Fail);

4. n = min(OPEN, f);
➜ IF ⋆(n) THEN RETURN(n); // Delayed termination.

remove(n, OPEN); add(n, CLOSED);

5. FOREACH n′ IN successors(n) DO // Expand n.
n′.parent = n;

➜ ///IF////////⋆(n′)////////THEN///////////////////RETURN(n′); // Early termination removed.
add(n′, OPEN, f(n′));

ENDDO

6. ENDLOOP

S:III-23 Informed Search © Stein/Lettmann/Hagen 1998-2021

Remarks:

❑ If the evaluation function f depends on the evaluations of the explored part G of the search
space graph ONLY, f is uninformed and algorithm Basic-BF* performs a uniform-cost search
with delayed termination.

❑ In the problem "minimum column sum of a matrix" the evaluation function f(n) which returns
the sum of column entries up to n is optimistic if matrix entries are nonnegative.
In this case, algorithm Basic-BF* returns an optimum column.

S:III-24 Informed Search © Stein/Lettmann/Hagen 1998-2021

Best-First Search Algorithms
Space Efficiency of Basic-BF and Basic-BF*

Approach:
Instead of storing all known paths to a node, only a most promising one is kept.

An implementation of this principle is called path discarding (aka parent discarding).

➜ Basic-BF with path discarding is called BF,
BF with delayed termination is called BF*.

Important preconditions for (provably) finding optimum solution paths in OR-graphs
by best-first algorithms:

1. The cost estimate underlying f must be order-preserving, i.e., a solution base
for a node n that is more promising than some other solution base for n will
lead to a solution path which is not inferior to solution paths reached by
extending the inferior solution base.

2. In particular, cyclic paths should not be considered.

3. When defining a tie breaking strategy for OPEN, goal nodes must be
preferred.

S:III-25 Informed Search © Stein/Lettmann/Hagen 1998-2021

Best-First Search Algorithms
Implementing Path Discarding in Basic-BF

BF(s, successors, ⋆, f) // An path discarding variant of Basic-BF.

1. s.parent = null; add(s, OPEN, f(s));
2. LOOP
3. IF (OPEN == ∅) THEN RETURN(Fail);
4. n = min(OPEN, f); // Find most promising (cheapest) solution base.

remove(n, OPEN); add(n, CLOSED);
5. FOREACH n′ IN successors(n) DO // Expand n.

n′.parent = n;
IF ⋆(n′) THEN RETURN(n′);
n′
old = retrieve(n′, OPEN ∪ CLOSED); // State of n′ already visited?
IF (n′

old == null)
THEN // n′ not in OPEN or CLOSED: n′ refers to a new state.

add(n′, OPEN, f(n′));
ELSE // n′ refers to an already visited state.
IF (f(n′) < f(n′

old)) // Compare cost of solution bases.
THEN // Solution base of n′ is cheaper: path discarding.

n′
old.parent = n′.parent; f(n′

old) = f(n′);
IF n′

old ∈ CLOSED THEN remove(n′
old, CLOSED); add(n′

old, OPEN, f(n
′
old)); ENDIF

ENDIF
ENDIF

ENDDO
6. ENDLOOP

S:III-26 Informed Search © Stein/Lettmann/Hagen 1998-2021

Remarks:

❑ The function retrieve(n′, OPEN ∪ CLOSED) retrieves (without removing) a previously stored node
instance from OPEN resp. CLOSED referring to the same state in G as n′.

❑ Due to space limitations the above algorithm does not mention that the new instance of a
node n′ that has a counterpart in OPEN or CLOSED has to be removed. BF always keeps of
all node instances referring to the same state only that one that was generated first.

❑ Statement f(n′
old) = f(n′) in algorithm BF is to be understood in the sense that old f -values

that have been stored (with the nodes) are overwritten. Not only the new parent reference,
also the new f -value is kept.

❑ The updating of back-pointers performed by BF algorithms preserves the structure of the
traversal tree (maintained by BF via nodes stored in OPEN and CLOSED and back-pointers)
at any point in time t.
At each point in time (i.e., each time that the algorithm is at the beginning of the main loop)
BF has a traversal tree at hand which is a subtree of G rooted in s.

S:III-27 Informed Search © Stein/Lettmann/Hagen 1998-2021

Remarks:

❑ Path discarding entails the risk of not finding desired solutions. The risk can be eliminated by
restricting to evaluation functions f that fulfill particular properties. Keyword: Order
preserving property [

:::::
S:III

:::::::::::::
Specialized

:::::
Cost

:::::::::::
Measures]

❑ If cyclic paths have smaller f -values than corresponding cyclefree paths, the back-pointer
structure will be corrupted when a cycle is found.

❑ As a consequence of path discarding at most one solution base for each state in G,

❑ As a consequence of path discarding, for two paths leading to the same node, the one with
the higher f -value is discarded.

S:III-28 Informed Search © Stein/Lettmann/Hagen 1998-2021

https://cs.uni-paderborn.de/fileadmin/informatik/fg/is/Teaching/slides-le/search/unit-en-informed-bf2.pdf#definition-order-preserving

Best-First Search Algorithms
Path Discarding for a Node n′

5. FOREACH n′ IN successors(n) DO // Expand n.
...
n′
old = retrieve(n′, OPEN ∪ CLOSED); // State of n′ already visited?
IF (n′

old == null)
...
ELSE
IF (f(n′) < f(n′

old)) // Compare cost of solution bases.
THEN // Solution base of n′ is cheaper: path discarding.

n′
old.parent = n′.parent; f(n′

old) = f(n′);
IF n′

old ∈ CLOSED THEN remove(n′
old, CLOSED); add(n′

old, OPEN, f(n
′
old)); ENDIF

ENDIF

❑ f(n′) is computed using the new node instance n′ and the back-pointer path from s to n′ via
its parent n.

❑ f(n′
old) is computed using the old node instance n′ and the back-pointer path from s to n′

old.

❑ n′ and n′
old are referring to the same state in G.

❑ Path discarding is performed implicitly by maintaining at most one node instance referring to
some state and, therefore, maintaining at most one back-pointer, i.e., at most one path.

❑ Algorithm BF cannot recover paths that were discarded, i.e., path discarding is irrevocable.

❑ f -values do not change over time. Once computed, f -values are stored with the nodes.

S:III-29 Informed Search © Stein/Lettmann/Hagen 1998-2021

Best-First Search Algorithms
Re-evaluation of a Node n′

Case 1: n′
old is still on OPEN.

5. FOREACH n′ IN successors(n) DO // Expand n.
...
n′
old = retrieve(n′, OPEN ∪ CLOSED); // State of n′ already visited?
IF (n′

old == null)
...
ELSE
IF (f(n′) < f(n′

old)) // Compare cost of solution bases.
THEN // Solution base of n′ is cheaper: path discarding.

n′
old.parent = n′.parent; f(n′

old) = f(n′);
IF n′

old ∈ CLOSED THEN remove(n′
old, CLOSED); add(n′

old, OPEN, f(n
′
old)); ENDIF

ENDIF

S:III-30 Informed Search © Stein/Lettmann/Hagen 1998-2021

Best-First Search Algorithms
Re-evaluation of a Node n′

Case 1: n′
old is still on OPEN.

5. FOREACH n′ IN successors(n) DO // Expand n.
...
n′
old = retrieve(n′, OPEN ∪ CLOSED); // State of n′ already visited?
IF (n′

old == null)
...
ELSE
IF (f(n′) < f(n′

old)) // Compare cost of solution bases.
THEN // Solution base of n′ is cheaper: path discarding.

n′
old.parent = n′.parent; f(n′

old) = f(n′);
IF n′

old ∈ CLOSED THEN remove(n′
old, CLOSED); add(n′

old, OPEN, f(n
′
old)); ENDIF

ENDIF

t0 t0

f

t

10 20 25 30

n'old n2n1

OPEN ∪ CLOSED list:State-space:

f = 10

f = 30

f = 20n1 n2

n'old

S:III-31 Informed Search © Stein/Lettmann/Hagen 1998-2021

Best-First Search Algorithms
Re-evaluation of a Node n′

Case 1: n′
old is still on OPEN.

5. FOREACH n′ IN successors(n) DO // Expand n.
...
n′
old = retrieve(n′, OPEN ∪ CLOSED); // State of n′ already visited?
IF (n′

old == null)
...
ELSE
IF (f(n′) < f(n′

old)) // Compare cost of solution bases.
THEN // Solution base of n′ is cheaper: path discarding.

n′
old.parent = n′.parent; f(n′

old) = f(n′);
IF n′

old ∈ CLOSED THEN remove(n′
old, CLOSED); add(n′

old, OPEN, f(n
′
old)); ENDIF

ENDIF

t0 t0

f

t

10 20 25 30

n'old n2n1

OPEN ∪ CLOSED list:State-space:

f = 10

f = 30

f = 20n1 n2

n'old

n'old n2n1n'

f = 25

S:III-32 Informed Search © Stein/Lettmann/Hagen 1998-2021

Best-First Search Algorithms
Re-evaluation of a Node n′

Case 1: n′
old is still on OPEN.

5. FOREACH n′ IN successors(n) DO // Expand n.
...
n′
old = retrieve(n′, OPEN ∪ CLOSED); // State of n′ already visited?
IF (n′

old == null)
...
ELSE
IF (f(n′) < f(n′

old)) // Compare cost of solution bases.
THEN // Solution base of n′ is cheaper: path discarding.

n′
old.parent = n′.parent; f(n′

old) = f(n′);
IF n′

old ∈ CLOSED THEN remove(n′
old, CLOSED); add(n′

old, OPEN, f(n
′
old)); ENDIF

ENDIF

t0 t0

f

t

10 20 25 30

n'old n2n1

OPEN ∪ CLOSED list:State-space:

f = 10

f = 30

f = 20n1 n2

n'old

n'old n2n1n'

f = 25

t1

n'old n2n1t1

S:III-33 Informed Search © Stein/Lettmann/Hagen 1998-2021

Best-First Search Algorithms
Re-evaluation of a Node n′ (continued)

Case 2: n′
old is already on CLOSED.

5. FOREACH n′ IN successors(n) DO // Expand n.
...
n′
old = retrieve(n′, OPEN ∪ CLOSED); // State of n′ already visited?
IF (n′

old == null)
...
ELSE
IF (f(n′) < f(n′

old)) // Compare cost of solution bases.
THEN // Solution base of n′ is cheaper: path discarding.

n′
old.parent = n′.parent; f(n′

old) = f(n′);
IF n′

old ∈ CLOSED THEN remove(n′
old, CLOSED); add(n′

old, OPEN, f(n
′
old)); ENDIF

ENDIF

S:III-34 Informed Search © Stein/Lettmann/Hagen 1998-2021

Best-First Search Algorithms
Re-evaluation of a Node n′ (continued)

Case 2: n′
old is already on CLOSED.

5. FOREACH n′ IN successors(n) DO // Expand n.
...
n′
old = retrieve(n′, OPEN ∪ CLOSED); // State of n′ already visited?
IF (n′

old == null)
...
ELSE
IF (f(n′) < f(n′

old)) // Compare cost of solution bases.
THEN // Solution base of n′ is cheaper: path discarding.

n′
old.parent = n′.parent; f(n′

old) = f(n′);
IF n′

old ∈ CLOSED THEN remove(n′
old, CLOSED); add(n′

old, OPEN, f(n
′
old)); ENDIF

ENDIF

t0 t0

t

f10 20 25 30 40

n'old n2n1

OPEN ∪ CLOSED list:State-space:

f = 10 f = 40

f = 30

n1 n2

n'old

S:III-35 Informed Search © Stein/Lettmann/Hagen 1998-2021

Best-First Search Algorithms
Re-evaluation of a Node n′ (continued)

Case 2: n′
old is already on CLOSED.

5. FOREACH n′ IN successors(n) DO // Expand n.
...
n′
old = retrieve(n′, OPEN ∪ CLOSED); // State of n′ already visited?
IF (n′

old == null)
...
ELSE
IF (f(n′) < f(n′

old)) // Compare cost of solution bases.
THEN // Solution base of n′ is cheaper: path discarding.

n′
old.parent = n′.parent; f(n′

old) = f(n′);
IF n′

old ∈ CLOSED THEN remove(n′
old, CLOSED); add(n′

old, OPEN, f(n
′
old)); ENDIF

ENDIF

t0 t0

t

f10 20 25 30 40

n'old n2n1

OPEN ∪ CLOSED list:State-space:

f = 10 f = 40

f = 30

n1 n2

n'old

n'old n1 n2n'

f = 25

S:III-36 Informed Search © Stein/Lettmann/Hagen 1998-2021

Best-First Search Algorithms
Re-evaluation of a Node n′ (continued)

Case 2: n′
old is already on CLOSED.

5. FOREACH n′ IN successors(n) DO // Expand n.
...
n′
old = retrieve(n′, OPEN ∪ CLOSED); // State of n′ already visited?
IF (n′

old == null)
...
ELSE
IF (f(n′) < f(n′

old)) // Compare cost of solution bases.
THEN // Solution base of n′ is cheaper: path discarding.

n′
old.parent = n′.parent; f(n′

old) = f(n′);
IF n′

old ∈ CLOSED THEN remove(n′
old, CLOSED); add(n′

old, OPEN, f(n
′
old)); ENDIF

ENDIF

t0 t0

t

f10 20 25 30 40

n'old n2n1

OPEN ∪ CLOSED list:State-space:

f = 10 f = 40

f = 30

n1 n2

n'old

n'old n1 n2n'

f = 25

t1

n2n'old n1t1

S:III-37 Informed Search © Stein/Lettmann/Hagen 1998-2021

Remarks:

❑ Given an occurrence of Case 2, it follows that f is not a monotonically increasing function in
the solution base size (path length): f(n′) < f(n2).

❑ Q. Given Case 2, and given the additional information that n2 is a descendant of n′. What
does this mean?

❑ Case 1 and Case 2 illustrate the path discarding behavior of algorithm BF, it follows that f is
not a monotonically increasing function in the solution base size (path length): f(n′) < f(n2).

❑ Implementation / efficiency issue: Instead of reopening a node n′ (i.e., instead of moving n′

from CLOSED to OPEN), a recursive update of the f -values and the back-pointers of its
successors can be done. This is highly efficient but should only be done with care as it can
easily lead to inconsistent traversal trees (wrong back-pointers).

After reopening a node n′, all the nodes n′′ from which n′ is reachable using only
back-pointers are still available. Since the f -values stored with such nodes n′′ are not
updated, subsequent node expansions may use f -values not matching back-pointer paths.
This can cause additional search efforts. Performing node expansion for nodes with invalid
f -values can be avoided by using order-preserving functions f . Reopening nodes can be
avoided by using monotonically increasing functions f (i.e., f(n) ≤ f(n′) for successors n′

of n).

S:III-38 Informed Search © Stein/Lettmann/Hagen 1998-2021

Best-First Search Algorithms
Re-evaluation of a Node n′ (continued)

Case 3: n′
old has been on OPEN but is not found on OPEN or CLOSED.

5. FOREACH n′ IN successors(n) DO // Expand n.
...
n′
old = retrieve(n′, OPEN ∪ CLOSED); // State of n′ already visited?
IF (n′

old == null)

➜ THEN // n′ not in OPEN or CLOSED: n′ is a new state.
add(n′, OPEN, f(n′));

ELSE
...

ENDIF

Possible reasons:

1. There is no occurrence check. (State-space graph G is modeled as a tree.)

2. The occurrence check does not work properly. Note that state recognition can
be a very hard (even undecidable) problem.

3. Explored parts of the state-space graph that seemed to be no longer required
have been deleted by cleanup_closed .

S:III-39 Informed Search © Stein/Lettmann/Hagen 1998-2021

Best-First Search Algorithms
Re-evaluation of a Node n′ (continued)

Case 3: n′
old has been on OPEN but is not found on OPEN or CLOSED.

5. FOREACH n′ IN successors(n) DO // Expand n.
...
n′
old = retrieve(n′, OPEN ∪ CLOSED); // State of n′ already visited?
IF (n′

old == null)

➜ THEN // n′ not in OPEN or CLOSED: n′ is a new state.
add(n′, OPEN, f(n′));

ELSE
...

ENDIF

Possible reasons:

1. There is no occurrence check. (State-space graph G is modeled as a tree.)

2. The occurrence check does not work properly. Note that state recognition can
be a very hard (even undecidable) problem.

3. Explored parts of the state-space graph that seemed to be no longer required
have been deleted by cleanup_closed .

S:III-40 Informed Search © Stein/Lettmann/Hagen 1998-2021

Remarks:

❑ Q. What is the effect of the occurrence check in Case 1 and Case 2?

❑ Q. Should each visited node be stored in order to recognize the fact that its associated
problem is encountered again?

❑ Q. Does a missing occurrence check affect the correctness of Algorithm BF?

❑ The shown version of the Algorithm BF has no call to cleanup_closed . However, such a call
can be easily integrated, similar to the algorithms DFS or BFS.

S:III-41 Informed Search © Stein/Lettmann/Hagen 1998-2021

Best-First Search Algorithms
BF∗(s, successors, ⋆, f) // A delayed termination variant of BF.

1. s.parent = null; add(s, OPEN, f(s)); // Store s on f-sorted OPEN.
2. LOOP
3. IF (OPEN == ∅) THEN RETURN(Fail);
4. n = min(OPEN, f); // Find most promising (cheapest) solution base.

➜ IF ⋆(n) THEN RETURN(n); // Delayed termination.
remove(n, OPEN); add(n, CLOSED);

5. FOREACH n′ IN successors(n) DO // Expand n.
n′.parent = n;

➜ ///IF////////⋆(n′)////////THEN///////////////////RETURN(n′); // Early termination removed.
n′
old = retrieve(n′, OPEN ∪ CLOSED); // State of n′ already visited?
IF (n′

old == null)
THEN

add(n′, OPEN, f(n′));
ELSE
IF (f(n′) < f(n′

old))
THEN // Solution base of n′ is cheaper: path discarding.

n′
old.parent = n′.parent; f(n′

old) = f(n′);
IF n′

old ∈ CLOSED THEN remove(n′
old, CLOSED); add(n′

old, OPEN, f(n
′
old)); ENDIF

ENDIF
ENDIF

ENDDO
6. ENDLOOP

S:III-42 Informed Search © Stein/Lettmann/Hagen 1998-2021

Best-First Search Algorithms

Definition 21 (Cycle-Averse Evaluation Function)

Let f be an evaluation function defined for state-space graph G.

f is called cycle-averse, if for each
:::::::
node n2 with a cyclic back-pointer path, i.e.,

containing another node n1 referring to the same state (n1 is first occurrence, nearer
to the start node s, and n2 is some later occurrence), such that n1 is reachable from
n2 via back-pointers, we have

f (n1) ≤ f (n2) i.e., fPs−n1
(n1) ≤ fPs−n1−n2(n2)

Back-pointer Structure Traversal Tree Path in G

s

n1

n2

s

sa

sb

sb

s

sa

sb

S:III-43 Informed Search © Stein/Lettmann/Hagen 1998-2021

https://cs.uni-paderborn.de/fileadmin/informatik/fg/is/Teaching/slides-le/search/unit-en-basic-search1.pdf#node-semantics

Remarks:

❑ If the task is to find a cheapest solution path that satisfies some constraints, we might not be
successful when f is cycle-averse, even if path from start to goal nodes exist.
As an example we can consider a minimum-path-length constraint, i.e., a solution path is
required to have at least a path length of B for some B in N. If a solution path exists, it might
be necessary to "blow up" the path by adding cycles in order to meet the length constraint.

S:III-44 Informed Search © Stein/Lettmann/Hagen 1998-2021

Best-First Search Algorithms
Irrevocable Path Discarding in BF

s

γ

t1 : f(n'old) = 9 t2 : f(n') = 4n'

Ps-n' P's-n'

Pn'-γ

Path discarding is based on f -values computed for node instances.

Irrevocability may not be allowable (solutions missed) if constraints on solution
paths take into account global properties of the path.

Examples:

1. “Determine the shortest path (cheapest solution) that has two edges (operators)
of equal costs.”

2. “Determine a path (a solution) that minimizes the maximum edge cost difference
(operator cost difference).”

S:III-45 Informed Search © Stein/Lettmann/Hagen 1998-2021

Best-First Search Algorithms
Irrevocable Path Discarding in BF (continued)

s

γ

t1 : f(n'old) = 9 t2 : f(n') = 4n'

Ps-n' P's-n'

Pn'-γ

Irrevocability is reasonable:

1. For constraint satisfaction problems, if the following equivalence holds:

“Solution base Ps−n′ can be completed by Pn′−γ to a solution path.”
⇔

“Solution base P ′
s−n′ can be completed by Pn′−γ to a solution path.”

2. For optimization problems, if for alternative solution bases the order w.r.t. cost
estimations is preserved when using Pn′−γ as their shared continuation.

S:III-46 Informed Search © Stein/Lettmann/Hagen 1998-2021

Best-First Search Algorithms

Definition 22 (Order-preserving Evaluation Function)

Let f be an evaluation function defined for state-space graph G.

f is called order-preserving, if for each pair of
::::::::::
nodes n′

1 and n′
2 with predecessors

n1 and n2 via back-pointers respectively, such that the back-pointer paths of n′
1 and

n′
2 coincide from n1 resp. n2 on, then we have

f (n1) ≤ f (n2) ⇒ f (n′
1) ≤ f (n′

2)

Back-pointer Structure Traversal Tree Paths in G

s

n1 n2

n1' n2'

s

sa

sb

sc

sa'

sb

sc

s

sa

sb

sc

sa'

S:III-47 Informed Search © Stein/Lettmann/Hagen 1998-2021

https://cs.uni-paderborn.de/fileadmin/informatik/fg/is/Teaching/slides-le/search/unit-en-basic-search1.pdf#node-semantics

Best-First Search Algorithms

Definition 23 (Optimistic Evaluation Function)

Let G be state-space graph and f an evaluation function for G.

f is called optimistic, if for each goal
::::::::
node γ and each predecessor node n in the

back-pointer path of γ (n reachable from γ via back-pointers), we have

f (n) ≤ f (γ)

Back-pointer Structure Traversal Tree Path in G

s

n

γ

s

sa

sb

γ

s

sa

sb

γ

S:III-48 Informed Search © Stein/Lettmann/Hagen 1998-2021

https://cs.uni-paderborn.de/fileadmin/informatik/fg/is/Teaching/slides-le/search/unit-en-basic-search1.pdf#node-semantics

Remarks:

❑ Let G be a state-space graph with non-negative cost values assigned to the edges. Let the
evaluation function f be defined by

fPs0−s1
(s1) = sum of edge cost value in Ps0−s1.

Then f is optimistic.

S:III-49 Informed Search © Stein/Lettmann/Hagen 1998-2021

Best-First Search Algorithms
Advanced Principles for an Algorithmization of Best-First Search for Optimization

PropBF (G) Required Properties of G for Optimization

1. G has Prop1(G) properties.

2. f is cycle-avers. (Avoiding corrupted backpointer structures.)

3. f is order-preserving. (Avoiding path discarding problems.)

Additional property (kept separate as usual):

❑ f is optimistic. (Avoiding overestimation problems.)

Task

❑ Determine an optimum
::::::::::
solution

::::::
path for s in G.

Algorithmization

❑ The algorithm uses Delayed Termination. (Avoiding last step problems.)

❑ The algorithm uses Path Discarding. (Efficiency.)

❑ The tie breaking strategy for OPEN prefers goal nodes.

S:III-50 Informed Search © Stein/Lettmann/Hagen 1998-2021

https://cs.uni-paderborn.de/fileadmin/informatik/fg/is/Teaching/slides-le/#solution-path-or-graph

State Space Search
Important Properties of Search Algorithms

Definition 24 (Admissibility)

Let A be an algorithm searching a state-space graph G for a solution path for a
given state s.

A is admissible if
A terminates returning an optimum (with respect to f) solution if a solution exists.

There is no guarantee for the existence of an optimum solution path, even if a
solution path exists.

S:III-51 Informed Search © Stein/Lettmann/Hagen 1998-2021

State Space Search

Lemma 25 (Admissibility of BF* for Finite Graphs)

Let G be for finite graphs G with PropBF (G) and let f be an optimistic evaluation
function for G. Then BF* is admissible.

Proof (sketch)

1. Since G is finite, the number of cycle-free solution paths starting in s is finite. Hence, a
minimum cost solution path Ps−γ exists in G. (Only cycle-free solution paths have to be
considered, since f is cycle-averse and order-preserving.)

2. Assume, BF* terminates returning a non-optimum solution Ps−γ′.
Hence, f(γ) < f(γ′).

3. At each point in time (whenever BF* is in step 2) before BF* terminates, there is a shallowest
node n in Ps−γ that is in OPEN.
(Shallowest node in a path is the node nearest to the start node.)
Hence, BF* cannot terminate with Fail .

4. A shallowest OPEN node on an optimum path is optimally reached, i.e., there is no path
from s to n with a smaller f -value than that the current back-pointer path.

5. Since f is optimistic, we have f(n) ≤ f(γ).

6. This contradicts the termination returning Ps−γ′, since goal node γ′ was selected from OPEN
when also n was available on OPEN.

S:III-52 Informed Search © Stein/Lettmann/Hagen 1998-2021

	TOC Informed Search Pt. 1
	Best-First Search Basics
	Best-First Search Algorithms
	Basic Principles of BF
	Algorithm Basic-BF
	Algorithm UCS
	Delayed Termination
	Algorithm Basic BF*
	Path Discarding
	Algorithm BF
	Algorithm BF*
	Advanced Principles of BF

