
Chapter S:III

III. Informed Search
❑ Best-First Search Basics
❑ Best-First Search Algorithms
❑ Cost Functions for State-Space Graphs
❑ Evaluation of State-Space Graphs
❑ Algorithm A*

❑ BF* Variants
❑ Hybrid Strategies

❑ Best-First Search for AND-OR Graphs
❑ Relation between GBF and BF
❑ Cost Functions for AND-OR Graphs
❑ Evaluation of AND-OR Graphs

S:III-118 Informed Search © Stein/Lettmann/Hagen 1998-2021

BF* Variants
For trees G:

::::::::::::::::::
Breadth-first

::::::::::::
search is a special case of A*, where h = 0 and

c(n, n′) = 1 for all successors n′ of n.

S:III-119 Informed Search © Stein/Lettmann/Hagen 1998-2021

https://cs.uni-paderborn.de/fileadmin/informatik/fg/is/Teaching/slides-le/search/unit-en-basic-search2.pdf#algorithm-bfs

BF* Variants
For trees G:

::::::::::::::::::
Breadth-first

::::::::::::
search is a special case of A*, where h = 0 and

c(n, n′) = 1 for all successors n′ of n.

s

Solved rest problem

Node on OPEN

Node on CLOSED1

1111

1

S:III-120 Informed Search © Stein/Lettmann/Hagen 1998-2021

https://cs.uni-paderborn.de/fileadmin/informatik/fg/is/Teaching/slides-le/search/unit-en-basic-search2.pdf#algorithm-bfs

BF* Variants
For trees G:

::::::::::::::::::
Breadth-first

::::::::::::
search is a special case of A*, where h = 0 and

c(n, n′) = 1 for all successors n′ of n.

s

Solved rest problem

Node on OPEN

Node on CLOSED1

1111

1

f = 1

f = 2

f = 0

f = 2

f = 3

f = 2 f = 2

f = 1

S:III-121 Informed Search © Stein/Lettmann/Hagen 1998-2021

https://cs.uni-paderborn.de/fileadmin/informatik/fg/is/Teaching/slides-le/search/unit-en-basic-search2.pdf#algorithm-bfs

BF* Variants
For trees G:

::::::::::::::::::
Breadth-first

::::::::::::
search is a special case of A*, where h = 0 and

c(n, n′) = 1 for all successors n′ of n.

s

Solved rest problem

Node on OPEN

Node on CLOSED1

1111

1

f = 1

f = 2

f = 0

f = 2

f = 3

f = 2 f = 2

f = 1

Proof (sketch)

1. g(n) defines the depth of n (consider path from n to s).
2. f(n) = g(n).
3. Breadth-first search ≡ the depth difference of nodes on OPEN is ≤ 1.

4. Assumption: Let n1, n2 be on OPEN, having a larger depth difference: f(n2)− f(n1) > 1.

5. ⇒ For the direct predecessor n0 of n2 holds: f(n0) = f(n2)− 1 > f(n1).
6. ⇒ n1 must have been expanded before n0 (consider minimization of f under A*).
7. ⇒ n1 must have been deleted from OPEN. Contradiction to 4.

S:III-122 Informed Search © Stein/Lettmann/Hagen 1998-2021

https://cs.uni-paderborn.de/fileadmin/informatik/fg/is/Teaching/slides-le/search/unit-en-basic-search2.pdf#algorithm-bfs

BF* Variants
For trees G:

:::::::::::::::::::
Uniform-cost

:::::::::::
search is a special case of A*, where h = 0.

Proof (sketch)

See lab class.

S:III-123 Informed Search © Stein/Lettmann/Hagen 1998-2021

https://cs.uni-paderborn.de/fileadmin/informatik/fg/is/Teaching/slides-le/search/unit-en-basic-search2.pdf#algorithm-ucs

BF* Variants
For trees G:

:::::::::::::::
Depth-first

::::::::::::
search is a special case of A*, where h = 0 and

c(n, n′) = −1 for all successors n′ of n.

S:III-124 Informed Search © Stein/Lettmann/Hagen 1998-2021

https://cs.uni-paderborn.de/fileadmin/informatik/fg/is/Teaching/slides-le/search/unit-en-basic-search2.pdf#algorithm-dfs

BF* Variants
For trees G:

:::::::::::::::
Depth-first

::::::::::::
search is a special case of A*, where h = 0 and

c(n, n′) = −1 for all successors n′ of n.

s

Solved rest problem

Node on OPEN

Node on CLOSED-1

-1-1-1-1

-1

S:III-125 Informed Search © Stein/Lettmann/Hagen 1998-2021

https://cs.uni-paderborn.de/fileadmin/informatik/fg/is/Teaching/slides-le/search/unit-en-basic-search2.pdf#algorithm-dfs

BF* Variants
For trees G:

:::::::::::::::
Depth-first

::::::::::::
search is a special case of A*, where h = 0 and

c(n, n′) = −1 for all successors n′ of n.

s

Solved rest problem

Node on OPEN

Node on CLOSED-1

-1-1-1-1

-1

f = -1

f = -2

f = 0

f = -2

f = -3

f = -1

S:III-126 Informed Search © Stein/Lettmann/Hagen 1998-2021

https://cs.uni-paderborn.de/fileadmin/informatik/fg/is/Teaching/slides-le/search/unit-en-basic-search2.pdf#algorithm-dfs

BF* Variants
For trees G:

:::::::::::::::
Depth-first

::::::::::::
search is a special case of A*, where h = 0 and

c(n, n′) = −1 for all successors n′ of n.

s

Solved rest problem

Node on OPEN

Node on CLOSED-1

-1-1-1-1

-1

f = -1

f = -2

f = 0

f = -2

f = -3

f = -1

Proof (sketch)

1. f(n′) < f(n) ⇒ n′ was inserted on OPEN after n.
f(n′) ≤ f(n) ⇔ n′ was inserted on OPEN after n.

2. Depth-first search ≡ the most recently inserted node on OPEN is expanded.
3. Let n2 be the most recently inserted node on OPEN.

4. Assumption: Let n1 have been expanded before n2 ∧ f(n1) ̸= f(n2).

5. ⇒ f(n1) < f(n2) (consider minimization of f under Z*).
6. ⇒ n1 was inserted on OPEN after n2.
7. ⇒ n2 is not the most recently inserted node on OPEN. Contradiction to 3.

S:III-127 Informed Search © Stein/Lettmann/Hagen 1998-2021

https://cs.uni-paderborn.de/fileadmin/informatik/fg/is/Teaching/slides-le/search/unit-en-basic-search2.pdf#algorithm-dfs

Remarks:

❑ Of course, depth-first search can also be seen as a special case of A*, where all edge cost
values are -1. The recursive cost function CP (n) defined by

CP (n) =

{
0 n is leaf in P

−1 + CP (n
′) n is inner node in P and n′ direct successor of n in P

allows the computation of f directly, i.e., without using local properties like edge cost values.
The equivalent recursive definition of f by f(n′) = f(n)− 1, f(s) = 0 shows that f values can
be propagated downwards resulting in a local computation of f values in Z* analogously to
the computation in A*.

S:III-128 Informed Search © Stein/Lettmann/Hagen 1998-2021

BF* Variants
Greedy best-first search is a special case of BF*, where f (n) = h(n), for all nodes n.

S:III-129 Informed Search © Stein/Lettmann/Hagen 1998-2021

BF* Variants
Greedy best-first search is a special case of BF*, where f (n) = h(n), for all nodes n.

s

Solved rest problem

Node on OPEN

Node on CLOSED

h=0

h=7h=5

h=9 h=3

h=8 h=13 h=22

S:III-130 Informed Search © Stein/Lettmann/Hagen 1998-2021

BF* Variants
Greedy best-first search is a special case of BF*, where f (n) = h(n), for all nodes n.

s

Solved rest problem

Node on OPEN

Node on CLOSED

h=0

h=7h=5

h=9 h=3

h=8 h=13 h=22

S:III-131 Informed Search © Stein/Lettmann/Hagen 1998-2021

BF* Variants
Greedy best-first search is a special case of BF*, where f (n) = h(n), for all nodes n.

s

Solved rest problem

Node on OPEN

Node on CLOSED

h=0

h=7h=5

h=9 h=3

h=8 h=13 h=22

❑ Greedy best-first search is greedily going for early termination (assuming small h-values
indicate small remaining problem, i.e., trusting in the Small-is-Quick Principle).

❑ Greedy best-first search represents an abuse of the evaluation function: although it is easy to
define f by a recursive cost function, the path cost concept used in computation of h is not
the path cost estimated by f .

❑ Greedy best-first search can take early found alternatives in OPEN into account, if h-values
were misleading.

❑ The name "Hill-Climbing" is often used as synonym for "Greedy (Best-First) Search", if no
alternatives are stored in OPEN.

S:III-132 Informed Search © Stein/Lettmann/Hagen 1998-2021

BF* Variants
OPEN List Size Restriction:: Hill-Climbing (HC)

Hill-climbing best-first search is an informed, irrevocable search strategy.

HC characteristics:

❑ local or greedy optimization:
take the direction of steepest ascend (merit) / steepest descend (cost)

❑ “never look back” :
alternatives are not remembered ➜ no OPEN/CLOSED lists needed

❑ usually low computational effort

❑ a strategy that is often applied by humans: online search

s

γ

s

γ

�
�

�
S:III-133 Informed Search © Stein/Lettmann/Hagen 1998-2021

Remarks:

❑ Originally, hill-climbing was formulated as a local search strategy (i.e., hill-climbing is working
on solution candidates, whereas best-first algorithms are working on solution bases that are
partial solution candidates which represent sets of solution candidates, any continuation of
the initial sequence of solution steps).
Restarts with random starting points, which are often used to avoid local optima in
hill-climbing, are not applicable to the best-first approach, since, except for the treatment of
ties, the exploration of the search space graph starting from the starting node s is fixed. For
the solution of optimization problems, the evaluation of solution bases must guarantee that an
optimal solution can be found by expanding the most promising solution basis.

❑ Simulating hill-climbing in best-first search:
For the 8-Queens problem, a solution candidate is a positioning of eight queens on the board.
The cost of a positioning is computed from the number of attacks between queens. By
moving single queens on the board to adjacent fields, the positioning can be changed.
Hill-climbing will evaluate the neighborhood of a solution candidate and switch to the most
promising one.
Obviously, this neighborhood could be computed by a successors(.) function and quality/cost
values can be assigned by an evaluation function f . (Applied to solution candidates, f does
not employ estimations.) Restarts can be simulated by using different initial problems.

❑ Implementing hill-climbing as best-first search:
A size limited priority list can be used as OPEN in order to implement the hill-climbing
strategy. Only the solution bases that performed best with respect to f are stored in OPEN.
The "never look back" idea is realized when using a size limit of 1.

S:III-134 Informed Search © Stein/Lettmann/Hagen 1998-2021

BF* Variants
OPEN List Size Restriction: Best-First Beam Search [Rich & Knight 1991]

Characteristics:

❑ Best-first search is used with an OPEN list of limited size k (the beam-width).

❑ If OPEN exceeds its size limit, nodes with worst f -values are discarded until
size limit is adhered to.

❑ Hill-climbing best-first search is best-first beam search with k = 1 and
checking f (n′) < f (n).

OPEN List Size Restriction: Breadth-First Beam Search [Lowerre 1976, Bisiani 1981]

Characteristics:

❑ All nodes of the current level (initially only s) are expanded.

❑ Only the best of all these successors are kept and used for the next level.
(For the selection of these nodes "a threshold of acceptability" can be defined [Lowerre 1976].

A simpler option is to restrict the next level to at most k nodes with best f -values.)

Operationalization for both variants:
❑ A cleanup_closed function is needed to prevent CLOSED from growing uncontrollably.

S:III-135 Informed Search © Stein/Lettmann/Hagen 1998-2021

BF* Variants
Algorithm: Beam-BF∗ (Compare

:::::::::::::::
Basic-BF∗,

:::::
BF∗.)

Input: s. Start node representing the initial state (problem) in G.
. . .
k. Limit for the size of OPEN.

Output: A node γ representing a solution path for s in G or the symbol Fail .

Beam-BF∗(s, successors, ⋆, f, k) // A OPEN size limited variant of
:::::::::::::::::
Basic-BF∗.

1. s.parent = null; add(s, OPEN, f(s)); // Store s on f-sorted OPEN.
2. LOOP
3. IF (OPEN == ∅) THEN RETURN(Fail);
4. n = min(OPEN, f); // Find most promising (cheapest) solution base.

IF ⋆(n) THEN RETURN(n);
remove(n, OPEN); add(n, CLOSED);

5. FOREACH n′ IN successors(n) DO // Expand n.
n′.parent = n;
IF (size(OPEN) == k)
THEN

n0 = max(OPEN, f); // Find least promising solution base.
IF (f(n′) < f(n0)) THEN remove(n0, OPEN);

ENDIF
IF (size(OPEN) < k) THEN add(n′, OPEN, f(n′));

ENDDO
6. ENDLOOP

S:III-136 Informed Search © Stein/Lettmann/Hagen 1998-2021

https://cs.uni-paderborn.de/fileadmin/informatik/fg/is/Teaching/slides-le/search/unit-en-informed-bf1.pdf#algorithm-basic-bf-star
https://cs.uni-paderborn.de/fileadmin/informatik/fg/is/Teaching/slides-le/search/unit-en-informed-bf1.pdf#algorithm-bf-star
https://cs.uni-paderborn.de/fileadmin/informatik/fg/is/Teaching/slides-le/search/unit-en-informed-bf1.pdf#algorithm-basic-bf-star

Remarks:

❑ In hill-climbing best-first search, it is often sufficient to use the heuristic function h instead of
f . In best-first beam search, this is not meaningful, since in this case the guiding function
would no longer be directly related to solution path cost.

❑ In the
:::::::::::::::
introduction, heuristic functions are given for some of the example problems. Informally

a hill-climbing approach was described for using these heuristic functions in a search for
solutions. The above version of hill-climbing can be directly applied to these problems.

– For the 8-Queens problem, the heuristic functions can be seen as describing a merit (i.e.,
the potential of positioning further queens): the higher, the better. Use f := −h

– For the 8-Puzzle problem the heuristic functions describe a cost (i.e., the distance to the
target configuration on the board): the lower, the better. Use f := h

– For the map problem and for TSP, the heuristic functions compute the Euclidean distance
to the target position, resp. the sum cost of a cost-minimal spanning tree / degree-2
graph. Again, these values can be seen as cost values. Use f := −h

However, the distance of the edge traversed last should also be taken into account, i.e.,
for a successor n′ the value h(n′) is compared to h(n) for the parent node n, but
comparisons between successors n′, n′′ use c(n, n′) + h(n′) and c(n, n′′) + h(n′′).

S:III-137 Informed Search © Stein/Lettmann/Hagen 1998-2021

https://cs.uni-paderborn.de/fileadmin/informatik/fg/is/Teaching/slides-le/search/unit-en-search-introduction.pdf

Remarks:

❑ For k = 1, best-first beam search is similar to the above described version of hill-climbing
search. However, there is an important difference:

Since f -values of successors are not compared to the f -value of the parent,
best-first beam search will continue search even in case a local optimum is found.

Therefore, in hill-climbing best-first search we would use

5. FOREACH n′ IN successors(n) DO // Expand n.
n′.parent = n;
IF ((size(OPEN) == 1) AND (f(n′) < f(n)))
THEN

n0 = max(OPEN, f); // Find least promising solution base.
IF (f(n′) < f(n0)) THEN remove(n0, OPEN);

ENDIF
IF ((size(OPEN) < 1) AND (f(n′) < f(n))) THEN add(n′, OPEN, f(n′));

ENDDO

❑ For k = 1, best-first beam search is an informed, irrevocable search strategy.

❑ Similar to hill-climbing, a low-quality evaluation function f may lead the search into parts of
the search space graph that do not contain solution paths. Completeness is endangered.

S:III-138 Informed Search © Stein/Lettmann/Hagen 1998-2021

Hybrid Strategies
Spectrum of Search Strategies

The search strategies

❑ Hill-climbing best-first irrevocable decisions, consideration of newest alternatives

❑ Informed backtracking tentative decisions, consideration of newest alternatives

❑ Best-first search tentative decisions, consideration of all alternatives

form the extremal points within the spectrum of search strategies, based on the
following dimensions:

R Recovery.
How many previously suspended alternatives (nodes) are reconsidered after
finding a dead end?

S Scope.
How many alternatives (nodes) are considered for each expansion?

S:III-139 Informed Search © Stein/Lettmann/Hagen 1998-2021

Hybrid Strategies
Spectrum of Search Strategies

The search strategies

❑ Hill-climbing best-first irrevocable decisions, consideration of newest alternatives

❑ Informed backtracking tentative decisions, consideration of newest alternatives

❑ Best-first search tentative decisions, consideration of all alternatives

form the extremal points within the spectrum of search strategies, based on the
following dimensions:

R Recovery.
How many previously suspended alternatives (nodes) are reconsidered after
finding a dead end?

S Scope.
How many alternatives (nodes) are considered for each expansion?

S:III-140 Informed Search © Stein/Lettmann/Hagen 1998-2021

Hybrid Strategies
Spectrum of Search Strategies

Scope: Amount of
alternatives considered
for each expansion

Tentative
decisions

Recovery: Amount of
suspended alternatives
reconsidered in
dead end situations

Consideration of only
newest alternatives

Consideration of
all alternatives

R

S

Irrevocable
decisions

The large scope of best-first search requires a high memory load.
This load can be reduced by mixing it with backtracking.

S:III-141 Informed Search © Stein/Lettmann/Hagen 1998-2021

Hybrid Strategies
Spectrum of Search Strategies

Scope: Amount of
alternatives considered
for each expansion

Tentative
decisions

Recovery: Amount of
suspended alternatives
reconsidered in
dead end situations

Consideration of only
newest alternatives

Consideration of
all alternatives

R

S

Irrevocable
decisions

Hill-Climbing

Best-First Search

Backtracking

The large scope of best-first search requires a high memory load.
This load can be reduced by mixing it with backtracking.

S:III-142 Informed Search © Stein/Lettmann/Hagen 1998-2021

Hybrid Strategies
Spectrum of Search Strategies

Scope: Amount of
alternatives considered
for each expansion

Tentative
decisions

Recovery: Amount of
suspended alternatives
reconsidered in
dead end situations

Consideration of only
newest alternatives

Consideration of
all alternatives

R

S

Irrevocable
decisions

Hill-Climbing

Best-First Search

Backtracking

❑ The large scope of best-first search requires a high memory load.
❑ This load can be reduced by mixing it with backtracking.

S:III-143 Informed Search © Stein/Lettmann/Hagen 1998-2021

Remarks:

❑ Recall that the memory consumption of best-first search is an (asymptotically) exponential
function of the search depth.

❑ Hill-climbing is the most efficient strategy, but its effectiveness (solution quality) can only be
guaranteed for problems that can be solved with a greedy approach.

❑ Informed backtracking (i.e., generate successors with some quality ordering) requires not as
much memory as best-first search, but usually needs more time as its scope is limited.

❑ Without a highly informed heuristic h, the degeneration of best-first strategies down to a
uniform-cost search is typical and should be expected as the normal case.

S:III-144 Informed Search © Stein/Lettmann/Hagen 1998-2021

Hybrid Strategies
Strategy 1: BF at Top

s

Characteristics:

❑ Best-first search is applied at the top of the search space graph.

❑ Backtracking is applied at the bottom of the search space graph.

Operationalization:

1. Best-first search is applied until a memory allotment of size M0 is exhausted.

2. Then backtracking starts with a most promising node n′ on OPEN.

3. If backtracking fails, it restarts with the next most promising OPEN node.

S:III-145 Informed Search © Stein/Lettmann/Hagen 1998-2021

Hybrid Strategies
Strategy 2: BF at Bottom

s

d0

Characteristics:

❑ Backtracking is applied at the top of the search space graph.

❑ Best-first search is applied at the bottom of the search space graph.

Operationalization:

1. Backtracking is applied until the search depth bound d0 is reached.

2. Then best-first search starts with the node at depth d0.

3. If best-first search fails, it restarts with the next node at depth d0 found by backtracking.

S:III-146 Informed Search © Stein/Lettmann/Hagen 1998-2021

Remarks:

❑ The depth bound d0 in Strategy 2 must be chosen carefully to avoid best-first search running
out of memory. Hence, this strategy is more involved than Strategy 1 where the switch
between best-first search and backtracking is triggered by the exhausted memory.

❑ If a sound depth bound d0 is available, Strategy 2 (best-first search at bottom) is usually
superior to Strategy 1 (best-first search at top). Q. Why?

S:III-147 Informed Search © Stein/Lettmann/Hagen 1998-2021

Hybrid Strategies
Strategy 3: Extended Expansion

s

Characteristics:

❑ Best-first search acts locally to generate a restricted number of promising nodes.

❑ Informed depth-first search acts globally, using best-first as an “extended node expansion”.

Operationalization:

1. An informed depth-first search selects the nodes n for expansion.

2. But a best-first search with a memory allotment of size M0 is used to “expand” n.

3. The nodes on OPEN are returned to the depth-first search as “direct successors” of n.

S:III-148 Informed Search © Stein/Lettmann/Hagen 1998-2021

Hybrid Strategies
Strategy 3: Extended Expansion

s

Characteristics:

❑ Best-first search acts locally to generate a restricted number of promising nodes.

❑ Informed depth-first search acts globally, using best-first as an “extended node expansion”.

Operationalization:

1. An informed depth-first search selects the nodes n for expansion.

2. But a best-first search with a memory allotment of size M0 is used to “expand” n.

3. The nodes on OPEN are returned to the depth-first search as “direct successors” of n.

S:III-149 Informed Search © Stein/Lettmann/Hagen 1998-2021

Remarks:

❑ Strategy 3 is an informed depth-first search whose node expansion is operationalized via a
memory-restricted best-first search.

❑ Q. What is the asymptotic memory consumption of Strategy 3 in relation to the search depth?

S:III-150 Informed Search © Stein/Lettmann/Hagen 1998-2021

Hybrid Strategies
Strategy 4: Focal Search [Ibaraki 1978]

Characteristics:

❑ An informed depth-first search is used as basic strategy.

❑ Nodes are selected from newly generated nodes and the best nodes
encountered so far.

Operationalization:

❑ The informed depth-first search expands the cheapest node n from its list of
alternatives.

❑ For the next expansion, it chooses from the newly generated nodes and the
k best nodes (without n) from the previous alternatives.

S:III-151 Informed Search © Stein/Lettmann/Hagen 1998-2021

Remarks:

❑ For k = 0 this is identical to an informed depth-first search.

❑ For k = ∞ this is identical to a best-first search.

❑ Memory consumption (without proof): O(b · dk+1), where b denotes the branching degree
and d the search depth.

❑ An advantage of Strategy 4 is that its memory consumption can be controlled via the single
parameter k.

❑ Differences to beam search:

– In focal search no nodes are discarded. Therefore, focal search will never miss a
solution.

– In best-first beam search the OPEN list is of limited size.

S:III-152 Informed Search © Stein/Lettmann/Hagen 1998-2021

Hybrid Strategies
Strategy 5: Staged Search [Nilson 1971]

s

Characteristics:

❑ Best-first search acts locally to generate a restricted number of promising nodes.

❑ Hill-climbing acts globally, but by retaining a set of nodes.

Operationalization:

1. Best-first search is applied until a memory allotment of size M0 is exhausted.

2. Then only the cheapest OPEN nodes (and their pointer-paths) are retained.

3. Best-first search continues until Step 1. is reached again.

S:III-153 Informed Search © Stein/Lettmann/Hagen 1998-2021

Remarks:

❑ Staged search can be considered as a combination of best-first search and hill-climbing.
While a pure hill-climbing discards all nodes except one, staged search discards all nodes
except a small subset.

❑ Staged search addresses the needs of extreme memory restrictions and tight runtime
bounds.

❑ Recall that the Strategies 1–4 are complete with regard to recovery, but that Strategy 5, Hill
Climbing, and Best-First Beam Search are not.

S:III-154 Informed Search © Stein/Lettmann/Hagen 1998-2021

Hybrid Strategies
Strategy 6: Iterative Deepening A* – IDA* [Korf 1985]

Characteristics:

❑ Depth-first search is used in combination with an iterative deepening
approach for f -values.

❑ Nodes are considered only if their f -values do not exceed a given threshold.

Operationalization of IDA*:

1. f -bound is initialized with f (s).

2. Calling f -limited-DFS:
In depth-first search, only nodes are considered with f (n) ≤ f -bound .
The value min-f -over which is the minimum of all f -values that exceeded the
current threshold is also returned (call by reference).

3. If depth-first search fails, f -bound is increased to min-f -over and
f -limited-DFS is rerun.

S:III-155 Informed Search © Stein/Lettmann/Hagen 1998-2021

Hybrid Strategies
f -value-limited DFS

An f -value limit f -bound helps to avoid infinite paths, a call by reference parameter allows the
interpretation of negative results ((min-f -over < f -bound) ⇒ no solution available).

f-limited-DFS(s, successors, ⋆, c, h, f-bound ,min-f-over) //
:::::::::::
DL-DFS variant.

1. s.parent = null; push(s, OPEN); g(s) = 0; f(s) = g(s) + h(s); min-f-over = f(s);

2. LOOP

3. IF (OPEN == ∅) THEN RETURN(Fail);
4. n = pop(OPEN); add(n, CLOSED);
5. IF (f(n) > f-bound) // Do not include nodes with higher f-values.

THEN
IF (min-f-over > f-bound) THEN min-f-over = min(f(n),min-f-over);
ELSE min-f-over = f(n);
ENDIF
cleanup_closed(); // Remove unreferenced nodes from CLOSED.

ELSE;
FOREACH n′ IN successors(n) DO // Expand n.

n′.parent = n; g(n′) = g(n) + c(n, n′); f(n′) = g(n′) + h(n′);
IF ⋆(n′) THEN RETURN(n′);
push(n′, OPEN); // Add node at the front of OPEN.

ENDDO
IF (successors(n) == ∅) THEN cleanup_closed(); // Remove dead ends.

ENDIF

6. ENDLOOP
S:III-156 Informed Search © Stein/Lettmann/Hagen 1998-2021

https://cs.uni-paderborn.de/fileadmin/informatik/fg/is/Teaching/slides-le/search/unit-en-basic-search2.pdf#algorithm-depth-limited-dfs

Hybrid Strategies

Algorithm: ID-A∗ (Iterative-Deepening-A∗) (Compare f-L-DFS,
:::::::::::
ID-DFS.)

Input: s. Start node representing the initial state (problem) in G.
successors(n). Returns new instances of nodes for the successor states in G.
⋆(n). Predicate that is True if n represents a goal state in G.
c(n, n′). Cost of the edge in G represented by (n, n′).
h(n). Heuristic cost estimation for the state in G represented by n.
initial-f -bound . Initial bound for f -values.
f -bound . Maximum bound for f -values to consider.

Output: A node γ representing an (optimum) solution path for s in G or the symbol Fail .

ID-A∗(s, successors, ⋆,⊥, initial-f-bound , f-bound) // A variant of ID-DFS.

1. current-f-bound = initial-f-bound; min-f-over = 0;

2. LOOP

3. IF (current-f-bound > f-bound) THEN RETURN(Fail);
4. result = f-L-DFS(s, successors, ⋆, current-f-bound ,min-f-over);

// min-f-over is a call by reference parameter.

IF (result != Fail) THEN RETURN(result);
IF (min-f-over < current-f-bound) THEN RETURN(Fail); // result is reliable.

current-f-bound = min-f-over;
5. ENDLOOP

S:III-157 Informed Search © Stein/Lettmann/Hagen 1998-2021

https://cs.uni-paderborn.de/fileadmin/informatik/fg/is/Teaching/slides-le/search/unit-en-basic-search2.pdf#algorithm-iterative-deepening-dfs

Remarks:

❑ IDA* always finds a cheapest solution path if the heuristic is admissible, or in other words the
heuristic never overestimates the actual cost to a goal node. (In such a case, the evaluation
function f = g + h is optimistic.)

❑ IDA* uses space linear in the length of a cheapest solution.

❑ IDA* expands the same number of nodes, asymptotically, as A* if the state space graph G is
a tree.

S:III-158 Informed Search © Stein/Lettmann/Hagen 1998-2021

	TOC Informed Search Pt. 3
	Algorithm Beam-BF*
	Algorithm f-limited-DFS
	Algorithm ID-A*

