Liveness in Transactional Memory

Jan Haltermann

Seminar: Software Transactional Memory

29.11.2017

'L(‘ PADERBORN UNIVERSITY

The University for the Information Society

Motivation - Why do we need Liveness?

'L(‘ PADERBORN UNIVERSITY
The University for the Information Society

Processp; ®

Processp, ®

op

Correctness/Safety v/

Desired behavior) ¢

Content 'L(‘ PADERBORN UNIVERSITY
The University for the Information Society

= Preliminaries
= How can liveness be defined?
® | jveness and correctness criteriain a STM

= Summary

Preliminaries

Preliminaries — System Model L —

= N asynchronous processes pq, ..., Pn

= Shared objects/memory for communication
= using base objects accessible via atomic operations

" Process p; accesses shared object A

Al0] .. Alj] .. Am]
= Processes are sequential (no parallel operations) SharedobjectA| 1 | .. | 3 | 4 | .. 6
Aljl=3+2
Processp; e . ~ ®
Y Time >

\ Operation op /

Transaction T

Preliminaries — Transactional Memory

Operation of process p;, on shared variable x

= x.readX: Read current value of x
= Returns value vor abort

= x.write®(v): Write value von x
= Returns ok or abort

= tryC*:Try to commit
= Returns commit or abort

l | l
Processp; e 1 i |

x.read > v x.writel(v) tryC?

o (!

'L(‘ PADERBORN UNIVERSITY

The University for the Information Society

Preliminaries — Transactional Memory A, o

The University for the Information Society

= Transaction: Sequence of reads and writes followed by a commit or abort

s T, <y T,:T; commits or aborts before first event of T, (T; preceds T,)

= Crashed transaction: stops taking operations in infinite history
= Waiting infinitely long for a response unequal to crashing

= Parasitic transaction: after point t, no tryC request
= Correct transaction: Neither crashed nor parasitic

Process p, t, ® I i | |
x.write'(1) x.write’(1) x. writel(1) x.write*(1) e**
Process p, t; @ I
x.write?(1) e

Preliminaries — Transactional Memory

= History: longest subsequence of an execution on a shared object

= Complete history: Every transaction ends with commit or abort

= Sequential history: No two transactions are concurrent

= Fair history: add a crash” event to all crashing processes

Process p;

Process p,

Process p3

® | | | |
x.write'(1) x.write’(1) x writel(1) x.write*(1) ***
. I
x. write?(1) cos
| |
o 1 1
x.write3(1) crash?

'L(‘ PADERBORN UNIVERSITY

The University for the Information Society

Preliminaries — Transactional Memory A, o

The University for the Information Society

= Legal transaction T: all reads of T and all transactions that precede T return valid values
(that are currently stored in shared object

" Process p, makes progress in fair history H, if H contains infinitely many ck
= Implies eventually all operations in transaction are not aborted

" Process p runs alone: from point t on, no other process takes steps in execution

Processp, @ : : —0 Al e : ! oCl © —e (!
x.read* >0 x.writel(1) x.readl! > 1 x.writel(2) x.read! > 2

Processp, @ : : o(2 o : ces
x.read? >0 x.write?(1) x.read?(1) crash?

Liveness for STMs

10

Loca | Progress 'L(‘ PADERBORN UNIVERSITY
The University for the Information Society

= Every correct process makes progress in a fair history
= Or there are no correct processes

t1.1 t1.2
Processp; ® : I —0 Al @ : ! o (!
o 1x. read® > 0 x.writel(1) o JZC readl! > 1 x.writel(0) cos
Processp, © : ! ®(* - — : 0 A?
x.read? >0 x.write?(1) x.read? > 1 x.write?(1)

= Stronger property than wait-freedom

= Wait-freedom: Every operation receives a response
= |ntroduced by Herlihy in 1991

11

= At least one correct process makes progress in a fair history
= Or there are no correct processes

Process p; s : : —0 Al tl% : | —0 Al
x.read! >0 x.write'(1) 2.2 read! >1 x.write'(1) cus
Process p 1! : | o (2 o : ! o (2
2] 1
x.read? >0 x.write*(1) x.read? > 1 x.write?(0)

= Stronger property than non-blocking

= Blocking-freedom: Some operation receives a response
= |ntroduced by Herlihy in 1991

= Weaker than local progress

Global Progress A

PADERBORN UNIVERSITY

The University for the Information Society

12

SOlO Progress 'L(‘ PADERBORN UNIVERSITY
The University for the Information Society

= Every correct process makes progress in a fair history, if it runs alone
= Or there are no correct processes

Processp,; @ I : —0 A o : | ol © F—e ¢ .-
x.read' >0 x.writel(1) x.read! > 1 x.writel(2) x.read! > 2

Processp, © : ! o(> © : i
x.read> >0 x.write*(1) x.read?(1) crash?

= Stronger property than obstruction-freedom
= Obstruction-freedom: operations executed isolated receive result
= |ntroduced by Herlihy et al. in 2003
= Weaker then global progress
13

Overview of Liveness Properties

'L(‘ PADERBORN UNIVERSITY
The University for the Information Society

1 = local progress, 2 = wait-freedom, 3 = global progress,
4 = lock-freedom, 5 = solo progress, 6 = obstruction-freedom

14

Liveness and correctness conditions in a STM

15

Correctness Conditions .L(\PAD_ERBORNUN.VERS.W

= History His opaque, iff there is an equivalent sequential history H; and all transactions in
H; are legal

= |ntroduced by Guerrauoi and Kapalka in 2007

= History H is strict serializable, iff there is an equivalent sequential history H; and all
committed transactions in H, are legal
= |ntroduced by Papadimitriou in 1979

Processp; e | | o

x.read’ > 0 x.read! > 1 Al

Processp, @ : .

x.write?(1) C?

16

Non-existence of opacity and local progress

'L(‘ PADERBORN UNIVERSITY
The University for the Information Society

For every fault-prone system there does not exists a STM-implementation
that ensures local progress and opacity.

17

Non-existence of opacity and local progress Qo s

The University for the Information Society

= Proof idea:
= Assume local progress and opacity ensured

= Construct strategy for two processes resulting in history violating local progress
= For crash-prone systems
= (For parasitic-prone systems)

= Assumption:
= QOperations of a transaction not known in advance
= Fault prone system

= Need to show:
= Every correct process makes progress
= Any resulting complete history is opaque

18

Non-existence of opacity and local progress - Strategy .L(\PAD_ERBORNUN,VERS,W

2
N Process p,
v''2 ok? C2

A? A2

Al Process p,
Cl
M N2 A2
v ok? c2 ok!
V2
A ’ Al Al

19

Non-existence of opacity and local progress - Proof Qe

The University for the Information Society

@ Process p;

Process p,

ok!

X.write!
(Vi l+1)

X.write?
(v'+1)

= Local progress ensured < all correct processes contain infinitely many commits

= Show that strategy produces infinite history
= By nontermination of strategy
= Strategy terminates, iff tryC* returns C?

20

Non-existence of opacity and local progress - Proof Qe

The University for the Information Society

, 1
« read? X.write? C x.write! ok rvC
| v (V) (v'+1) i
A2
Al
| 1
Process p; T, ® : 1 —e (
x.read'> v’ x.write!(v" + 1)
Process p, T, ® i : ® (2

x.read*> Vv’ x.write?(v' + 1) 21

Impossibility of opacity and local progress - Proof .L(\PAD_ERBORNUN,VERS,W

Process p; T, @ : : —e (1

x.read'> v’ x.write!(v" + 1)

Process p, T, ® : : o (2

x.read*> V" x.write?(v' +1)

1. Possible real-time ordering
T, —oip | ect T, ® | o c?

x.read'> v’ x.write!(v" + 1) x.recd* >V’ x.write?(v' +1)

2. Possible real-time ordering

T, ® i : ® (2 T, ® : o (!

x.read*> Vv’ x.write?(v' + 1) x.reqdt=> v’ x.writel(v" + 1)

= Strategy will never terminate, since both real time orderings not valid

22

Impossibility of opacity and local progress - Proof .L(\PAD_ERBORNUN,VERS,W

N Process p;
v ok? C2
A’ A2
A Process p,
Cl
A2 AZ
V‘l
e @ - e - @ - e
V2
N QA Al N

= Observation: In infinite execution, p; doesn’t make progress

= |f p; does not crash = contradiction to local progress (since p; makes no progress)
" p, crashes, iff tryC2 never returns C?
= p, will eventually make progress = p; cannot be crashed

23

Generalized result — further definitions A, o

The University for the Information Society

= Non-blocking liveness: progress for any correct process running alone
= Local progress, global progress and solo progress are non-blocking

= Biprogressing: at least 2 correct processes makes progress

= Local progress is biprogressing
= Global progress and solo progress does not necessary ensure biprogressing

1 = local progress,

2 = wait-freedom,

3 = global progress,

4 = |lock-freedom,

5 =solo progress,

6 = obstruction-freedom
5 = non-blocking

7 = biprogressing

24

Generalized result T p——

For every fault-prone system and every STM-liveness property L that is non-
blocking and biprogressing there is no STM-implementation that ensures L
and strict-serializability.

25

Su m ma ry 'L(‘ PADERBORN UNIVERSITY
The University for the Information Society

= Formal definition of liveness-conditions for STM
= Local progress
= Global progress
= Solo progress

= Proven that opacity and local progress cannot be guaranteed in STM

= Options for STMs ensuring liveness and correctness conditions:
= Weaker liveness criteria (global progress and opacity work together (e.g. in OSTM)
= Static processes (operations known in advance)
= Assume fault-free system with deferred-update

26

Sou rces 'L(‘ PADERBORN UNIVERSITY
The University for the Information Society

= Bushkov, V., Guerraoui, R.: Liveness in Transactional Memory. In: Transactional Memory.
Foundations, Algorithms, Tools, and Applications. pp. 32—-49. Springer, Cham (2015).

= Herlihy, M.P.: Wait-free synchronization. Toplas. 13, 124-149 (1991).

= Herlihy, M., Luchangco, V., Moir, M., Scherer, W.N.: Software transactional memory for
dynamic-sized data structures. Proc. twenty-second Annu. Symp. Princ. Distrib. Comput. -
Pod. '03.92-101 (2003).

= Guerraoui, R., Kapatka, M.: Opacity : A Correctness Condition for Transactional Memory.
Tech. Rep. LPD-REPORT-2007-004, EPEL. (2007).

= Papadimitriou, C.H.: The serializability of concurrent database updates. J. ACM. 26, 631-
653 (1979).

= K. Fraser. Practical Lock-Freedom. PhD thesis, University of Cambridge, 2003.

27

Backup slides

28

Wait-freedom incomparable to global progress RN

The University for the Informat

1 = local progress,

2 = wait-freedom,

3 = global progress,

4 = |lock-freedom,

5 =solo progress,

6 = obstruction-freedom

|
Processp; ® I I —0 Al ® I } —0 Al
x.read! >0 x.writel(1) x.read' >0 x.write!(1) cos
Processp, @ : I —0 A* ° I I —0 A*
x.read’> >0 x.write?(1) x.read’> >0 x.write*(1)

29

Wait-freedom incomparable to global progress RN

The University for the Information So

1 = local progress,

2 = wait-freedom,

3 = global progress,

4 = |lock-freedom,

5 =solo progress,

6 = obstruction-freedom

|
Process p4 ® I I —e (1 o I 1 —e (1
x.read! >0 x.writel(1) x.read' >0 x.write!(1) cos
Processp, e——i .
x.read? 2> 0 x.write?(1)

30

Generalized result U p——

= Assume crash-prone system

= Proof structure:
= Show that presented strategy produces infinite history
= Same argument as before
= Only different: Obtained history not strict serializable
= Show that both processes are correct
= p, cannot crash
= p, crashes iff p, receives infinitely many A%. (impossible due to non-blocking)
= Show contradiction to biprogressins
» Both processes correct
" p, makes progress, p; does not

31

