
Theses Topics
Paul Bittner, Sebastian Krieter | April 18, 2024

I am. . .

• Paul Bittner

• a PhD student at SE Group at Uni Paderborn

• a Bachelor+Master from TU Braunschweig,
began PhD at Ulm University

I work on . . .

formal languages for software variability,

evolution of configurable software,

synchronizing diverging branches and forks,

interactive theorem-proving.

Paul Bittner, Sebastian Krieter Theses Topics 2

I am. . .

• Sebastian Krieter

• Postdoc at SE Group at Uni Paderborn

• Studied in Magdeburg , Worked at Harz Uni-
versity of Applied Sciences and Ulm University

I work on . . .

feature-model analysis and software product
line testing

sampling of configurable systems

Paul Bittner, Sebastian Krieter Theses Topics 3

Engineering Highly-Configurable Systems at the Example of Sandwiches

Paul Bittner, Sebastian Krieter Theses Topics 4

Background: Presence ConditionsSampling with Evolving Presence Conditions (M)
Background: Sampling in the Solution Space

Presence Conditions Source File
Log
Log
Log

(Log ∧ EXT)
(Log ∧ EXT)
(Log ∧ EXT)

(Log ∧ Mac) ∨ (Log ∧ Win)
(Log ∧ Mac) ∨ (Log ∧ Win)
(Log ∧ Mac) ∨ (Log ∧ Win)

Log
Log
Log

//#if Logging
pub l i c c l a s s Logger {

pub l i c void l og (St r i ng message) {
//#if EXT
p r i n t (”FS␣ i s ␣EXT”) ;
//#endif
//#if macOS || Windows
p r i n t (”OS␣ i s ␣not␣Linux ”) ;
//#endif

}
}
//#endif

⇒ Use presence conditions instead of features for sampling

Sebastian Krieter Thesis Topics – Feature Modeling and Sampling – Thesis Topics – 1. Topics 7

;

Paul Bittner, Sebastian Krieter Theses Topics 5

Formal Languages for Variability — Example: Choice Calculus

e ::= a�e, . . . , e� Object Structure
| D⟨e, . . . , e⟩ Choice

J

�
Salad?⟨ , ◦⟩,

,

Patty⟨ , ⟩,

Sauce⟨◦, , , ⟩
�

Kc

always

maybe

always

oreither

andany combination of

always

=

� , , , ,�,

if c(Salad?) = 0,
c(Patty) = 0,
c(Sauce) = 2.

Paul Bittner, Sebastian Krieter Theses Topics 6

Formal Languages for Variability — Example: Choice Calculus

e ::= a�e, . . . , e� Object Structure
| D⟨e, . . . , e⟩ Choice

J

�
Salad?⟨ , ◦⟩,

,

Patty⟨ , ⟩,

Sauce⟨◦, , , ⟩
�

Kc

always

maybe

always

oreither

andany combination of

always

=

� , , , ,�,

if c(Salad?) = 0,
c(Patty) = 0,
c(Sauce) = 2.

Paul Bittner, Sebastian Krieter Theses Topics 6

Formal Languages for Variability — Example: Choice Calculus

e ::= a�e, . . . , e� Object Structure
| D⟨e, . . . , e⟩ Choice

J

�
Salad?⟨ , ◦⟩,

,

Patty⟨ , ⟩,

Sauce⟨◦, , , ⟩
�

Kc

always

maybe

always

oreither

andany combination of

always

=

� , , , ,�,

if c(Salad?) = 0,
c(Patty) = 0,
c(Sauce) = 2.

Paul Bittner, Sebastian Krieter Theses Topics 6

Formal Languages for Variability — Example: Choice Calculus

e ::= a�e, . . . , e� Object Structure
| D⟨e, . . . , e⟩ Choice

J �
Salad?⟨ , ◦⟩,

,

Patty⟨ , ⟩,

Sauce⟨◦, , , ⟩
�Kc

always

maybe

always

oreither

andany combination of

always

=

� , , , ,�,

if c(Salad?) = 0,
c(Patty) = 0,
c(Sauce) = 2.

Paul Bittner, Sebastian Krieter Theses Topics 6

Comparing the Expressive Power of Variability Languages

Clone-and-Own (CaO)

N-ary Choice
Calculus (n-CC)

Core Choice
Calculus (CCC)

Binary Choice
Calculus (2CC)

Algebraic Deci-
sion Trees (ADT)

Option
Calculus (OC)

Feature Struc-
ture Trees (FST)

clamp

∀n ∈ N

id ◦ shrink2

n = 2

gro
w

shrink2

dead branch eliminationcomplete incomplete

sound

Paul Bittner, Sebastian Krieter Theses Topics 7

Topic: On the Expressive Power of Variation Trees
B.Sc. / M.Sc.

Context

There are many formal languages for static software
variability. These languages formalize and specify
implementations such as C preprocessor, feature-
oriented, aspect-oriented, delta-oriented program-
ming. We can compare the expressive power of
such languages by means of compilers between lan-
guages and correctness proofs.

Problem

Variation Trees are a graph-based language used to
study the evolution of configurable software. Ba-
sic properties of variation trees such as soundness,
completeness, and expressiveness have not yet been
explored.

Task

Formalize variation trees in Agda, and prove their
(in)completeness, (un)soundness, and relate their
expressive power to the other languages, we have
already formalized in our library.

Useful but not Mandatory Experience

interest in formal methods or compilers,
experience in functional programming (e.g., Haskell
or Agda)

Further Reading

• Programming Language Foundations in Agda
• The Choice Calculus – A Formal Language of Variation,
Walkingshaw, Dissertation
• Classifying Edits to Variability in Source Code, Bittner et al.,
ESEC/FSE’22

Paul Bittner, Sebastian Krieter Theses Topics 8

https://plfa.github.io
https://eric.walkingshaw.net/files/pubs/2013/dissertation-choice-calculus.pdf
https://eric.walkingshaw.net/files/pubs/2013/dissertation-choice-calculus.pdf
https://github.com/SoftVarE-Group/Papers/raw/main/2022/2022-ESECFSE-Bittner.pdf
https://github.com/SoftVarE-Group/Papers/raw/main/2022/2022-ESECFSE-Bittner.pdf

Topic: Formalizing Levels of Expressiveness
M.Sc.

Context

See previous slide + As an absolute measure for
expressiveness, we introduced completeness. A lan-
guage is complete, if it can describe any set of
variants. We detected different levels of expressive-
ness of languages in an initial study.

Problem

Besides completeness, there is no absolute measure
for other expressiveness levels. These levels are not
yet clearly understood and formalized as distinct
properties.

Task

Formalize language properties besides completeness
in Agda. Investigate relations between your prop-
erties and which existing (incomplete) languages
satisfy these properties.

Useful but not Mandatory Experience

interest in formal methods and type theory
experience in functional programming (e.g., Haskell
or Agda)

Further Reading

• see previous slide
• contact us for a preprint with more concrete information

Paul Bittner, Sebastian Krieter Theses Topics 9

#ifdef A
foo();

-#else
- #ifdef B
+ bar();
+#endif
+#if B && (!A || C)

baz();
- #endif
#endif

#ifdef A
foo();

#else
#ifdef B
baz();
#endif

#endif

r

A

foo(); else

B

baz();

#ifdef A
foo();
bar();

#endif
#if B && (!A || C)
baz();

#endif

r

A

foo();

B ∧ (¬A ∨ C)

baz();

r

A

foo(); #else

B

baz();

bar();

B ∧ (¬A ∨ C)

parse

parse

parse

diff

diff

diff

diff

Paul Bittner, Sebastian Krieter Theses Topics 10

#ifdef A
foo();

-#else
- #ifdef B
+ bar();
+#endif
+#if B && (!A || C)

baz();
- #endif
#endif

#ifdef A
foo();

#else
#ifdef B
baz();
#endif

#endif

r

A

foo(); else

B

baz();

#ifdef A
foo();
bar();

#endif
#if B && (!A || C)
baz();

#endif

r

A

foo();

B ∧ (¬A ∨ C)

baz();

r

A

foo(); #else

B

baz();

bar();

B ∧ (¬A ∨ C)

parse

parse

parse

diff

diff

diff

diff

Paul Bittner, Sebastian Krieter Theses Topics 10

#ifdef A
foo();

-#else
- #ifdef B
+ bar();
+#endif
+#if B && (!A || C)

baz();
- #endif
#endif

#ifdef A
foo();

#else
#ifdef B
baz();
#endif

#endif

r

A

foo(); else

B

baz();

#ifdef A
foo();
bar();

#endif
#if B && (!A || C)
baz();

#endif

r

A

foo();

B ∧ (¬A ∨ C)

baz();

r

A

foo(); #else

B

baz();

bar();

B ∧ (¬A ∨ C)

parse

parse

parse

diff

diff

diff

diff

Paul Bittner, Sebastian Krieter Theses Topics 10

#ifdef A
foo();

-#else
- #ifdef B
+ bar();
+#endif
+#if B && (!A || C)

baz();
- #endif
#endif

#ifdef A
foo();

#else
#ifdef B
baz();
#endif

#endif

r

A

foo(); else

B

baz();

#ifdef A
foo();
bar();

#endif
#if B && (!A || C)
baz();

#endif

r

A

foo();

B ∧ (¬A ∨ C)

baz();

r

A

foo(); #else

B

baz();

bar();

B ∧ (¬A ∨ C)

parse

parse

parse

diff

diff

diff

diff

Paul Bittner, Sebastian Krieter Theses Topics 10

Topic: Unparsing Variation Trees and Diffs
B.Sc.

Context

Variation trees and variation diffs constitute ab-
stract syntax for variational software and changes
to that software (i.e., patches and diffs). This ab-
stract syntax enables powerful analyses and trans-
formations.

Problem

Some tasks require concrete syntax instead of ab-
stract syntax (e.g., applying a modified variation
diff as a patch). However, our tool DiffDetective
cannot yet unparse variation trees and diffs after
potential modification to their initial text represen-
tation.

Task

Implement unparsing of variation trees and diffs
and develop strategies for encountered challenges
such as ambiguities due to information loss. (Invert
the horizontal arrows in the previous image.) Test
correctness and evaluate runtime performance em-
pirically.

Useful but not Mandatory Experience

experience in OOP/Java, interest in compilers

Further Reading

• DiffDetective website
• Classifying Edits to Variability in Source Code, Bittner et al.,
ESEC/FSE’22
• Variability-Aware Differencing with DiffDetective, Bittner
et al., FSE’24

Paul Bittner, Sebastian Krieter Theses Topics 11

https://variantsync.github.io/DiffDetective
https://github.com/SoftVarE-Group/Papers/raw/main/2022/2022-ESECFSE-Bittner.pdf
https://github.com/SoftVarE-Group/Papers/raw/main/2022/2022-ESECFSE-Bittner.pdf

Topic: Variability-Aware Patching
B.Sc.

Context

Software variants might be developed in different
branches or forks. With time, these branches might
get out of sync.

Problem

Synchronizing certain changes (e.g., bugfixes) be-
tween variants can be challenging. Given a patch
p to a variant a, applying p to another variant b
might fail when p also changes code in a that is
not in b, or when there is auxiliary code in b at the
location of the patch.

Task

Develop + implement a patch mutation operator
to adapt a patch on a source variant to a target
variant. Identify when such an operator is correct.
Evaluate runtime performance and patching quality
empirically.
Hint: This topic partially subsumes the previous.

Useful but not Mandatory Experience

interest in formal methods and set theory, experi-
ence in OOP/Java

Further Reading

• see previous slide
• Views on Edits to Variational Software, Bittner et al.,
SPLC’23

Paul Bittner, Sebastian Krieter Theses Topics 12

https://github.com/SoftVarE-Group/Papers/raw/main/2023/2023-SPLC-Bittner.pdf
https://github.com/SoftVarE-Group/Papers/raw/main/2023/2023-SPLC-Bittner.pdf

Background: Feature-Model SamplingComparing Different Coverage Criteria (M)
Background: Sampling in the Problem Space

⇒
{Server ,FS,OS,HFS,Mac}
{Server ,FS,OS,NTFS,EXT ,Win}
{Server ,FS,OS,EXT ,Deb, Log}
...

• Create a representative list of configurations (e.g., for testing)
• Random
• Coverage criteria
• ...

Sebastian Krieter Thesis Topics – Feature Modeling and Sampling – Thesis Topics – 1. Topics 5

;

Paul Bittner, Sebastian Krieter Theses Topics 13

Topic: Incremental Partial T-Wise Sampling
M.Sc.

Context

Full t-wise sample be may be too large to be tested
completely. Typically, there are some fixed test
capabilities per system (number of configurations
that can be tested).

Problem

What configurations to choose when not all can be
tested?

Task

Optimize the coverage achieved by a fixed number
of configurations. Compare the results to existing
solutions.

Useful but not Mandatory Experience

Knowledge about configurable software / software
product lines, experience in Java

Further Reading

• YASA: yet another sampling algorithm, Krieter et al., Va-
MoS’20

Paul Bittner, Sebastian Krieter Theses Topics 14

Topic: Sampling with Evolving Presence Conditions
M.Sc.

Context

Samples can be based on presence conditions of
implementation artifacts. Like the code itself, pres-
ence conditions may also change when a product
line evolves.

Problem

How often and to what degree do presence condi-
tions change on average?

Task

Measure the rate at which presence conditions
change during the history of multiple product lines.
Compare the results and try to find correlations and
trends.

Useful but not Mandatory Experience

Knowledge about configurable software / software
product lines, experience in Java

Further Reading

• T-Wise Presence Condition Coverage and Sampling for
Configurable Systems , Krieter et al., arXiv 2022 • Variability-
Aware Differencing with DiffDetective, Bittner et al., FSE’24

Paul Bittner, Sebastian Krieter Theses Topics 15

