
3 Randomized Rounding
In this section we will introduce various randomized algorithms that can find good solutions to combinatorial optimization
problems. First, we define some important classes of optimization problems, and then we study various randomized
rounding techniques for special problems like the MAXSAT problem, the MINCUT problem, the SETCOVER problem,
and finally, the MaxCUT problem. The randomized rounding idea goes back to an influential work by Raghavan and
Thomson [RT87] and is nowadays a standard technique in the area of approximation algorithms.

3.1 Optimization problems
In general, optimization problems are defined as follows. Consider a set S of feasible solutions and an ordered set (T,≤)
of evaluations. Moreover, consider the mapping f : S → T (the objective function). We are looking for an element x∗ ∈ S
with the property that f(x∗) ≥ f(x) for all s ∈ S (maximization problem) or f(x∗) ≤ f(x) for all x ∈ S (minimization
problem). It is common to use the following notation:

maxx∈S f(x) or max{f(x) | x ∈ S}
minx∈S f(x) or min{f(x) | x ∈ S}

In practice, mostly either R (the set of real numbers), Q (the set of rational numbers), or Z (the set of integers) are
used for (T,≤). The formulation above, however, is too general. If S is just given by a list of all of its elements, this
problem is either useless or trivial (one simply computes f(x) for all x ∈ S). Thus, S should instead be specified by
certain constraints that uniquely determine S without the need to know each of its elements. Also, the function f should
have a compact representation. The optimization problems that we are interested in in this section are defined as follows:

• Linear optimization problem (Linear Program, or short LP):
Let c ∈ Rn, A ∈ R(m,n), and b ∈ Rm. Then the optimization problem with S = {x ∈ Rn | Ax ≤ b} and
f(x) = cT x is called a linear optimization problem.

• Integer linear optimization problem (Integer Linear Program, or short ILP):
Let c ∈ Rn, A ∈ R(m,n), and b ∈ Rm. Then the optimization problem with S = {x ∈ Zn | Ax ≤ b} and
f(x) = cT x is called an integer linear optimization problem.

Integer optimization problems are also called combinatorial optimization problems. Combinatorial problems are usually
hard to solve while for linear optimization problems there are efficient polynomial-time algorithms (i.e., the methods
by Karmarkar and Kachiyan). One approach is therefore to convert a combinatorial optimization problem into a linear
optimization problem, to optimally solve that, and then convert this solution back into an integer solution. A standard
technique for the conversion into an integer solution is randomized rounding, which will be illustrated in this section by
considering various examples.

3.2 The MAXSAT Problem
Let V = {x1, . . . , xn} be a set of Boolean variables, i.e., variables that can only take the values TRUE and FALSE. A
literal is a variable xi ∈ V or its negation x̄i. A clause C = `1 ∨ . . . ∨ `k is a disjunction of literals. A Boolean formula
(resp. expression) Φ is in conjunctive normal form (CNF) if it is a conjunction of clauses, i.e., Φ = C1 ∧ . . . ∧ Cm for
some clauses Cj . We also write in this section Cj ∈ Φ. For example, the Boolean formula

Φ(x1, x2, x3) = x̄1 ∧ (x1 ∨ x̄2 ∨ x3) ∧ (x1 ∨ x̄3) ∧ (x2 ∨ x3)

is in CNF.
In the MAXSAT problem we are given a Boolean formula Φ in CNF. The set S of all feasible solutions of Φ is given

by the set of all truth assignments b : V → {TRUE, FALSE} of the Boolean variables in Φ. Given a truth assignment, a
Boolean expression is recursively evaluated in the following way:

1

Φ1 ¬Φ1

TRUE FALSE
FALSE TRUE

Φ1 Φ2 Φ1 ∨ Φ2

TRUE TRUE TRUE
TRUE FALSE TRUE
FALSE TRUE TRUE
FALSE FALSE FALSE

Φ1 Φ2 Φ1 ∧ Φ2

TRUE TRUE TRUE
TRUE FALSE FALSE
FALSE TRUE FALSE
FALSE FALSE FALSE

We say that a Boolean expression Φ is satisfiable if there is a truth assignment b that satisfies Φ (i.e., Φ(b) = TRUE).
The objective function is given by

fΦ(b) = |{Cj ∈ Φ | Cj(b) = TRUE}|
Thus, fΦ(b) is the number of clauses in Φ that are satisfied by b. We are looking for the b∗ that maximizes fΦ(b∗).

It is straightforward to formulate the MaxSAT problem as an ILP. We replace the domain of each Boolean variable xi

by {0, 1} where 0 means FALSE and 1 means TRUE. For each clause Cj we introduce a binary variable zj that is 1 if and
only if Cj is satisfied. In this case, the number of satisfied clauses is given by

∑m
j=1 zj . In order to set zj to 1, at least

one of the literals in Cj = `1 ∨ . . . ∨ `k must be true. Let V +
j the set of non-negated variables in Cj and V −

j be the set
of negated variables in Cj . Then zj can be set to 1 if

∑
xi∈V +

j
xi +

∑
xi∈V −j

(1 − xi) ≥ 1. Thus, we can formulate the
following ILP:

maximize
m∑

j=1

zj

subject to
∑

xi∈V +
j

xi +
∑

xi∈V −j

(1− xi) ≥ zj for all j

xi, zj ∈ {0, 1} for all i, j (1)

Here, xi, zj ∈ {0, 1} is a short form of the constraints that xi ≥ 0, xi ≤ 1, zj ≥ 0, zj ≤ 1, and xi, zj ∈ Z for all i, j.
An optimal solution to this ILP is obviously a maximum satisfying assignment and therefore not easier to compute than

an optimal solution to the original problem. However, when replacing the conditions in (1) by

0 ≤ x̂i, Ẑj ≤ 1 for all i, j

then the resulting optimization problem is an LP and therefore can be solved optimally in time polynomial in the size of the
LP [Kar91]. Since the size of the LP is polynomial in the size of Φ, the polynomial time bound also applies to the original
instance Φ.

The approach of exchanging a restrictive by a more general condition and thereby obtaining a simpler problem is called
relaxation. Note that a relaxation usually changes the set of feasible solutions. Hence, after obtaining a feasible solution for
the relaxation, one has to use a mechanism to convert it into a solution that is also feasible for the original problem. In the
following we assume that the x∗i , Z

∗
j represent the values of an optimal solution for our LP. Since an optimal assignment

for Φ fulfills the conditions of the LP, it holds:

m∑

j=1

Z∗j ≥ OPT(Φ) .

This is the relationship we intend to use when comparing the quality of our solution with the quality of a best possible
solution for MAXSAT. It is frequently used when applying linear optimization to approximation algorithms and is called
the superoptimality of the linear relaxation.

How do we arrive now from a real-valued solution to a feasible integral solution? Simply by using the following
randomized rounding approach.

RANDOMIZEDROUNDING(π):

for i = 1 to n do

with probability
{

πi : xi = 1
1− πi : xi = 0

2

The randomized rounding approach can now be used to construct the following algorithm for the MAXSAT problem.

1. determine an optimal solution x∗ to the linear relaxation for Φ
2. set πi = x∗i for every i (∗)
3. use RANDOMIZEDROUNDING(π) to obtain a feasible solution for the ILP

Intuitively, the randomized rounding approach tries to select a feasible solution that is as close to x∗ as possible, hoping
that this will produce a feasible solution whose value is close to the value of x∗. In fact, when viewing TRUE = 1 and
FALSE = 0, we get

E[xi] = Pr[xi = 1] = x∗i

and therefore E[
∑

i xi] =
∑

i x∗i .
If we assume that the xi’s are chosen independently at random in RANDOMIZEDROUNDING, we get the following

relationship between TB(Cj) and Z∗j .

Lemma 3.1 Let kj be the number of literals in Cj . Then it holds:

Pr[x satisfies Cj] ≥
(

1−
(

1− 1
kj

)kj
)
· Z∗j .

Proof. We need two well-known facts.

Fact 3.2

(a) If ai ≥ 0 for all i, then (
∏k

i=1 ai)1/k ≤ 1
k

∑k
i=1 ai, i.e. the geometric mean is at most as large as the arithmetic

mean.

(b) If the function f(x) is concave (i.e. f ′′(x) ≤ 0) in the interval [a, b] and f(a) ≥ c · a + d and f(b) ≥ c · b + d, then
f(x) ≥ c · x + d for all x ∈ [a, b].

Cj can be written as

Cj =

∨

xi∈V +
j

xi

 ∨

∨

xi∈V −j

x̄i

 .

Hence, it follows from the linear program formulation that

Z∗j ≤
∑

xi∈V +
j

x∗i +
∑

xi∈V −j

(1− x∗i) . (2)

Obviously, Cj is false if and only if all xi ∈ V +
j are set to 0 (representing FALSE) and all xi ∈ V −

j are set to 1 (representing
TRUE). This happens with probability

∏

xi∈V +
j

(1− x∗i)

 ·

∏

xi∈V −j

x∗i

 .

3

Here it is important that the xi’s are chosen independently at random. The product consists of altogether kj factors. Thus,

Pr[x satisfies Cj] = 1−

∏

xi∈V +
j

(1− x∗i)

 ·

∏

xi∈V −j

x∗i

Fact 3.2(a)
≥ 1−

(∑
xi∈V +

j
(1− x∗i) +

∑
xi∈V −j

x∗i
kj

)kj

= 1−
(|V +

j | −
∑

xi∈V +
j

x∗i + |V −
j | −

∑
xi∈V −j

(1− x∗i)

kj

)kj

= 1−

kj −

(∑
xi∈V +

j
x∗i +

∑
xi∈V −j

(1− x∗i)
)

kj

kj

(2)

≥ 1−
(

1− Z∗j
kj

)kj

Fact 3.2(b)
≥

(
1−

(
1− 1

kj

)kj
)
· Z∗j

ut

Theorem 3.3 For every Boolean expression Φ in CNF in which there are at most k literals in every clause,

E[fφ(x)] ≥
(

1−
(

1− 1
k

)k
)
·OPT(Φ) .

Proof. Let Φ = C1 ∧ . . . ∧ Cm and let k be the length of the longest clause.

E[fφ(x)] =
m∑

j=1

Pr[x satisfies Cj]

≥
m∑

j=1

(
1−

(
1− 1

kj

)kj
)
· Z∗j

(a)

≥
(

1−
(

1− 1
k

)k
)
·

m∑

j=1

Z∗j

(b)

≥
(

1−
(

1− 1
k

)k
)
·OPT(Φ)

We used in (a) that 1 − (1 − 1/z)z is monotonically decreasing for z > 0 and in (b) the superoptimality of the linear
relaxation. ut

Since 1− (1− 1/k)k ≥ 1− 1/e for all k ∈ N, we obtain:

Theorem 3.4 The expected number of satisfied clauses achieved on input Φ is at least (1 − 1/e) · OPT(Φ) ≈ 0.632 ·
OPT(Φ).

We used for the randomized rounding the assignment πi = x∗i for all i (see (∗)). For other assignments like πi =
1
2x∗i + 1

4 one can even show that the expected objective value is at least (3/4) · OPT. The same holds for arbitrary
assignments for π with 1− 1/4x∗i ≤ πi ≤ 4x∗i−1 for all i. This approach is called non-linear randomized rounding.

The best known approximation algorithm for MAXSAT with a polynomial runtime achieves an expected objective
value of at least 0.833 · OPT [AW00]. It is a combination of various optimization techniques including semidefinite
optimization, which is discussed later in this section.

4

3.3 The MINCUT Problem
In the MINCUT problem we are given an undirected graph G = (V,E) with special nodes s, t ∈ V and edge costs
c : E → R+. A partition (U, Ū) of V is called an (s, t)-cut if s ∈ U and t ∈ Ū = V \ U . The cost of a cut (U, Ū) is
defined as

c(U, Ū) =
∑

{v,w}∈E: v∈U,w∈Ū

c(v, w)

The set S of feasible solutions is the set of all (s, t)-cuts, and the objective function is defined as f(U, Ū) = c(U, Ū). Our
goal is to find an (s, t)-cut with minimal cost.

The MINCUT problem can be formulated as an ILP. For every node i let the binary variable xi be 0 if i ∈ U and 1
otherwise, and for each edge {i, j} let the binary variable zi,j be 1 if the edge {i, j} crosses the cut (U, Ū) and 0 otherwise.
Then the goal is to minimize

∑
{i,j}∈E ci,jzi,j . Formally, the ILP looks as follows:

minimize
∑

{i,j}∈E

ci,jzi,j

subject to xi − xj ≤ zi,j and xj − xi ≤ zi,j for all {i, j} ∈ E

xs = 0 and xt = 1
xi, zi,j ∈ {0, 1} for all i, j

If we replace the condition xi, zi,j ∈ {0, 1} by 0 ≤ xi, zi,j ≤ 1, we obtain a linear program. For an optimal solution of
the ILP and its linear relaxation it has to hold that zi,j = |xi − xj |. Let x∗i and z∗i,j be the values of an optimal solution
of the linear relaxation, and let the objective value of that solution be y∗. Certainly, the optimal value OPT of the integer
program must satisfy y∗ ≤ OPT. We will now prove via randomized rounding that y∗ = OPT.

Choose a random u ∈ [0, 1). For every i ∈ V we set xi = 0 if x∗i ≤ u and otherwise xi = 1. Consider now a fixed
edge {i, j} ∈ E. The edge crosses the cut if and only if u ∈ [min{x∗i , x∗j},max{x∗i , x∗j}), which happens with probability
|x∗i − x∗j |, i.e., z∗i,j . Hence, E[zi,j] = z∗i,j and therefore,

E[
∑

{i,j}∈E

ci,jzi,j] =
∑

{i,j}∈E

ci,jE[zi,j] =
∑

{i,j}∈E

ci,jz
∗
i,j = y∗

Thus, there must be a u with
∑
{i,j}∈E ci,jzi,j ≤ y∗, which implies that y∗ = OPT. Moreover, since there cannot be

a u with
∑
{i,j}∈E ci,jzi,j < y∗, the rounding for all u leads to an optimal value. See, for example, [TS97] for more

applications of this idea.

3.4 The SETCOVER Problem
In the SETCOVER problem we are given a set S1, . . . , Sm of subsets of {1, . . . , n} with costs c1, . . . , cm ∈ R+. The set
S of feasible solutions is the set of all subsets C ⊆ {1, . . . ,m} with the property that for every element j ∈ {1, . . . , n}
there is at least one i ∈ C with j ∈ Si, i.e., S(C) = {Si | i ∈ C} is a (set) cover of {1, . . . , n}. The goal is to minimize
f(C) =

∑
i∈C ci.

Also the SETCOVER problem can be expressed as an integer linear program. Let the binary random variables x1, . . . , xm

have the property that xi = 1 if and only if i ∈ C. Using these variables, we get

minimize
m∑

i=1

cixi

subject to
∑

i:j∈Si

xi ≥ 1 for all j

xi ∈ {0, 1} for all i

This can be turned into a linear program if we replace xi ∈ {0, 1} by 0 ≤ xi ≤ 1. Let (x∗1, . . . , x
∗
m) be an optimal solution

of this linear relaxation. We use the following rounding strategy in order to turn this solution into an integer solution.

5

(y1, . . . , ym) := (0, . . . , 0)
for r := 1 to t do

(x1, . . . , xm) := RANDOMIZEDROUNDING(π(x) = x∗)
(y1, . . . , ym) := (y1 ∨ x1, . . . , ym ∨ xm)

output (y1, . . . , ym)

The solution obtained by that algorithm may not be feasible, but we will see that for a sufficiently large t it is feasible
with high probability. For this we need the following lemma.

Lemma 3.5 The probability that some fixed element j ∈ {1, . . . , n} is not covered after t rounds is at most (1/e)t.

Proof. Consider an arbitrary fixed element j. Let Cr = {i ∈ {1, . . . , m} | xi = 1} be the subset that is randomly
generated in round r. Then

Pr[j 6∈
⋃

i∈Cr

Si] =
∏

i:j∈Si

(1− x∗i) ≤
∏

i:j∈Si

e−x∗i = e−
∑

i:j∈Si
x∗i

since it holds that 1− x ≤ e−x for all x ∈ R. From the constraints of the LP we know that
∑

i:j∈Si
x∗i ≥ 1. Hence,

Pr[j 6∈
⋃

i∈Cr

Si] ≤ 1/e

When using t independent randomized roundings, the probability that j is not covered by any of the subsets Cr is at most
(1/e)t. ut

Let Cr be the subset chosen in round r and let C =
⋃t

r=1 Cr. Then it holds for t = ln(4n):

Pr[S(C) is not a cover] ≤
n∑

j=1

Pr[S(C) does not cover j]

≤
n∑

j=1

(
1
e

)t

= n

(
1
e

)ln(4n)

= n · 1
4n

=
1
4

The expected cost for every Cr is equal to
∑m

i=1 cix
∗
i and therefore equal to the optimal cost of the linear program, which

we denote by y∗. The expected cost of C is therefore y∗ ln(4n). According to the Markov inequality it holds for any
non-negative random variable X that

Pr[X ≥ k · E[X]] ≤ 1
k

Thus, it holds that

Pr[cost(C) ≥ 4y∗ ln(4n)] ≤ 1
4

Thus, the probability that our algorithm produces a feasible solution with an approximation ratio of less than 4 ln(4n) (i.e.,
the objective value is less than a factor of 4 ln(4n) away from the optimal solution)) is equal to

1− Pr[S(C) is not a cover or cost(C) ≥ 4y∗ ln(4n)] ≥ 1− (Pr[S(C) is not a cover] + Pr[cost(C) ≥ 4y∗ ln(4n)])
≥ 1− (1/4 + 1/4) = 1/2

On expectation, it must therefore be executed at most twice to obtain a feasible solution.
The best known approximation algorithm for the SETCOVER problem is, surprisingly, a simple deterministic greedy

algorithm, which guarantees an approximation ratio of ln n + 1. On the other hand, Feige [Fei98] has shown that no
polynomial time algorithm can have a better approximation ratio than (1 − o(1)) ln n (unless some complexity classes
collapse), so complexity of solving the SETCOVER problem is well-understood.

3.5 Semidefinite optimization
In this subsection we will continue to refine our randomized rounding techniques by using semidefinite optimization. An
excellent overview of applications for semidefinite optimization can be found in [WSV00].

6

3.5.1 Definitions and facts

We start with a short introduction to linear algebra. A sequence A = (αi,j) with entries αi,j ∈ R for all 1 ≤ i ≤ m and
1 ≤ j ≤ n is called a matrix with n columns and m rows and written as

A =

α1,1 α1,2 · · · α1,n

α2,1 α2,2 · · · α2,n

...
...

...
αm,1 αm,2 · · · αm,n

If n = 1, A is simply called a vector. Let M(m,n;R) be the space of all real-valued matrices with m rows and n columns.
Basic operations on matrices are performed as follows:

• For any two matrices A,B ∈ M(m,n;R):

A + B = (αi,j) + (βi,j) = (αi,j + βi,j) ∈ M(m,n;R) .

• For any γ ∈ R and any matrix A ∈ M(m,n;R):

γ ·A = γ · (αi,j) = (γ · αi,j) ∈ M(m,n;R) .

• For any two matrices A ∈ M(m,n;R) and B = M(n, p;R):

A ·B = (αi,j) · (βi,j) = (γi,j) ∈ M(m, p;R)

with γi,j =
∑n

k=1 αi,k · βk,j for all i, j.

The neutral element concerning addition is 0m,n ∈ M(m, n;R), and the neutral element concerning multiplication is
En ∈ M(n, n;R), where

Om,n =

0 0 · · · 0
0 0 · · · 0
...

...
...

0 0 · · · 0

 and En =

1 0 · · · 0
0 1 · · · 0
...

...
...

0 0 · · · 1

That is, for any matrix A ∈ M(m,n;R), A + 0m,n = A and A · En = Em · A = A. The transpose of a matrix
A = (αi,j) ∈ M(m,n;R) is defined as

AT =

α1,1 α2,1 · · · αm,1

α1,2 α2,2 · · · αm,2

...
...

...
α1,n α2,n · · · αm,n

A vector a = (αi) ∈ Rm is called a unit vector if it is of unit length or
√√√√

m∑

i=1

α2
i = 1 .

A matrix A ∈ M(n, n;R) is called positive semidefinite if for all b ∈ Rn, bT · A · b ≥ 0. A is symmetric and positive
semidefinite if there is a matrix B ∈ M(m,n;R) with BT ·B = A.

Definition 3.6 A semidefinite program is a linear program in which we demand that the solution for the variables can be
represented as a symmetric and positive semidefinite matrix. That is, a semidefinite program looks as follows:

7

Semidefinite program (SDP):

optimize
∑

i,j

ci,j · xi,j

subject to
∑

i,j

a(i,j),k · xi,j ≤ bk for all k

X = (xi,j) is symmetric and positive semidefinite

OPT(SDP) represents the optimal value achievable for the given SDP.

Fact 3.7

(a) If A is symmetric and positive semidefinite, then the matrix B with the property that BT · B = A can be computed
in time O(n3) with the help of a so-called Cholesky decomposition.

(b) If all diagonal entries in a symmetic and positive semidefinite matrix A are equal to 1, then each column of the
corresponding matrix B is a unit vector in Rm.

(c) Semidefinite optimization can be performed in time O(poly(n, m, log(1/ε))) with an absolute error of at most ε for
any ε > 0. That is, a symmetric and positive semidefinite matrix X(ε) = (x(ε)

i,j) is computed whose entries fulfill the
restrictions and

|OPT(SDP)−
∑

i,j

ci,j · x(ε)
i,j | ≤ ε .

Example 3.8

(a) The matrix A1 =
(

1 4
4 1

)
is not positive semidefinite, since (1,−1) ·A1 ·

(
1

−1

)
= −6.

(b) The matrix A2 =
(

1 −1
−1 4

)
is positive semidefinite, since A2 = BT ·B for B =

(
1 −1
0

√
3

)
.

3.6 The MAXCUT problem
Semidefinite optimization was used with great success for the design of an approximation algorithm for the problem of
determining a maximum cut in a graph. The algorithm presented in this section is the best algorithm known so far for this
problem.

Definition 3.9 An instance of the MAXCUT problem is an undirected, connected graph G = (V,E). A feasible solution
for G is a cut (U, Ū), where

(U, Ū) = {{v, w} ∈ E | v ∈ U and w ∈ Ū}
for some subset U ⊆ V . The objective is to maximize |(U, Ū)|, i.e., the number of edges crossing that cut.

The decision variant of the MAXCUT problem is NP-complete [GJ79, p. 210]. Similar to the MAXSAT problem,
every graph has a relatively large cut.

Theorem 3.10 Let G = (V,E) be a connected graph. Then G has a cut of size at least |E|/2.

The proof can be done with the help of a probabilistic method (see Theorem 1.6). Hence, it immediately implies a ran-
domized approximation algorithm with an expected approximation ratio of 2 that runs in time O(|V |+ |E|). Alternatively,
the theorem could also be proved with the help of a simple, deterministic greedy algorithm.

For a long time, an approximation ratio of 2 was the best result known for MAXCUT. It took until 1994 before Goemans
and Williamson came up with a better approximation ratio that is based on semidefinite optimization [GW95]. We will
present their method in the following.

First, we show how to transform the MAXCUT problem into a so-called quadratic optimization problem. Let n = |V |
and AG = (ai,j) ∈ M(n, n;R) be the adjacency matrix of the given graph G = (V, E), i.e. for all nodes i, j ∈ V ,

ai,j =
{

1 if {i, j} ∈ E
0 otherwise

8

In order to perform an arithmetization of the problem, we select a variable xi for each node i that can take the values
−1 and +1. xi = −1 means that i ∈ U , and xi = +1 means that i ∈ Ū . For an edge {i, j} ∈ E consider the value
1
2 (1− xixj). If the edge is crossing the cut, then its value is 1 and otherwise 0. Hence,

|(U, Ū)| =
∑

{i,j}∈E

1
2 (1− xixj) = 1

2

∑

i<j

ai,j(1− xixj) .

(
∑

i<j is an abbreviation of
∑n

i=1

∑n
j=i+1.) Now we can state the following optimization problem:

Quadratic program for MAXCUT:

maximize 1
2

∑

i<j

ai,j(1− xixj) (3)

subject to xi ∈ {−1, +1} for all i (4)

Since in the objective function (3) two variables are multiplied with each other, we talk about a quadratic optimization
problem. Due to condition (4) it is hard to solve. However, just relaxing (4) to −1 ≤ xi ≤ 1 does not help much, because
we still have a quadratic objective function. Instead, our aim will be to convert this program into a semidefinite program.
This will be done in several stages.

First, we replace every variable xi by an n-dimensional vector ~xi = (xi, 0, . . . , 0)T of length 1 (recall that n = |V |).
This does not change anything in the objective function, since ~x T

i · ~xj = xi · xj . We relax now these vectors in a form that
we allow all places in them to have values different from 0, as long as they are still of unit length. We call these vectors ~ui.
It holds that ~u T

i · ~ui = 1. This results in the following relaxation:

Relaxed quadratic program for MAXCUT:

maximize 1
2

∑

i<j

ai,j(1− ~u T
i ~uj) (5)

subject to ~u T
i · ~ui = 1 for all i (6)

Now we are ready to transform the program into a semidefinite program. We introduce n2 new variables yi,j with
yi,j = ~u T

i · ~uj . These variables can be written as a matrix Y = (yi,j) ∈ M(n, n;R). Since the ~ui have a length of 1,
yi,i = 1 for all i. Let B = (~u1 ~u2 · · · ~un) whose columns are the vectors ~ui. It is easy to check that Y = BT ·B. Thus, we
know that Y is symmetric and positive semidefinite. Thus, we can formulate now the semidefinite program corresponding
to the MAXCUT problem:

Semidefinite program “SD-CUT” for MAXCUT:

maximize 1
2

∑

i<j

ai,j(1− yi,j) (7)

subject to Y = (yi,j) is symmetric and positive semidefinite (8)
yi,i = 1 for all i (9)

According to Fact 3.7(c), this semidefinite optimization problem can be solved with an absolute error of ε (we will
determine the ε later). Hence, y

(ε)
i,j can be computed with

0 ≤ OPT(SD-CUT)− 1
2

∑

i<j

ai,j(1− y
(ε)
i,j) ≤ ε .

Since OPT(G) ≤ OPT (SD-CUT), it follows that

1
2

∑

i<j

ai,j(1− y
(ε)
i,j) ≥ OPT(G)− ε . (10)

This bound will be useful later.

9

u 1

u 3

u 2

u 1 u 3

u 2

Figure 1: Possible vectors in the unit ball: (a) in the quadratic program and (b) in the semidefinite program

From the obtained symmetric and positive semidefinite matrix Y (ε) we can get via Cholesky decomposition the matrix
B and therefore the vectors ~ui. Due to Fact 3.7(b), these vectors are unit vectors. It remains to transform the ~ui’s into the
original xi’s. We will do this with the help of a randomized method.

Figure 1(a) shows the situation we would have had, had we been able to obtain an optimal solution for the original
quadratic program. The vectors have the values ~u1 = (−1, 0, 0)T , ~u2 = (1, 0, 0), and ~u3 = (1, 0, 0).

Figure 1(b) shows the situation for the optimal solution obtained for the semidefinite program. It may consist of vectors
whose endpoints are somewhere on the surface of the ball. The problem is to divide these vectors into two sets (one for the
value −1, and one for the value +1 in the original problem). We do this with the help of a random hyperplane through the
origin of the ball. All vectors that lie on one side of the plane will be mapped to −1, and the vectors that lie on the other
side will be mapped to +1.

Now we have to determine how to select the random hyperplane. Since we require it to go through the origin of the
ball, it will be completely determined by selecting a normal vector ~r for the hyperplane, i.e. a vector that is orthogonal to
all vectors aligned with the hyperplane. From analytical geometry it is known that ~ui and ~uj lie on opposite sides of the
hyperplane if sgn(~r T · ~ui) 6= sgn(~r T · ~uj). Hence, the complete algorithm looks as follows:

Algorithm SDCUT:

1. ε = 0.0005
2. solve the semidefinite program for MAXCUT with absolute error ε

3. compute the matrix B with Y (ε) = BT ·B via Cholesky decomposition
(this will give the vectors ~ui)

4. select uniformly at random an n-dimensional unit vector ~r

5. for i = 1 to n do
if ~r T · ~ui ≥ 0

then xi = +1 (i.e. add node i to V⊕)
else xi = −1 (i.e. add node i to Vª)

6. output (Vª, V⊕)

Theorem 3.11 Let G = (V,E) be a graph with at least one edge. Then E[SDCUT(G)] ≥ 0.878 ·OPT(G), i.e. algorithm
SDCUT has an expected approximation ratio of at most 1

0.878 = 1.139.

Proof. Let the indicator variables Xi,j be defined as

Xi,j =
{

1 if {i, j} ∈ E crosses the cut
0 otherwise

10

i

u j

u

α

Figure 2: Angle α between ~ui and ~uj .

Obviously, E[Xi,j] = ai,j · Pr[xi 6= xj] and therefore

E[SDCUT(G)] = E

 ∑

{i,j}∈E

Xi,j

 =

∑

{i,j}∈E

E[Xi,j] =
∑

i<j

ai,j · Pr[xi 6= xj]

=
∑

i<j

ai,j Pr[sgn(~r T · ~ui) 6= sgn(~r T · ~uj)] .

In Figure 2 we see the 2-dimensional plane spanned by ~ui and ~uj . Due to symmetry reasons, the probability that the
random hyperplane separates ~ui and ~uj is equal to the ratio of the angle α between ~ui and ~uj and π. Since cosα =
~u T

i ·~uj

|~ui|·|~uj | = ~uT
i · ~uj , we get

Pr[sgn(~r T · ~ui) 6= sgn(~r T · ~uj)] =
α

π
=

arccos(~u T
i · ~uj)

π

and therefore

E[SDCUT(G)] =
∑

i<j

ai,j · arccos(~u T
i · ~uj)

π

(a)

≥
∑

i<j

ai,j · 0.8785(1− ~u T
i · ~uj)

2

= 0.8785 · 1
2

∑

i<j

ai,j(1− ~u T
i · ~uj)

= 0.8785 · 1
2

∑

i<j

ai,j(1− y
(ε)
i,j)

(10)

≥ 0.8785 · (OPT(G)− ε)
(b)

≥ 0.878 ·OPT(G) .

For (a) we used that for all z ∈ [−1, +1],
arccos z

π
≥ 0.8785(1− z)

2
.

(b) holds because of the choice of ε. ut

Semidefinite optimization was possible, because we were able to describe the MAXCUT problem as a quadratic pro-
gram. Quadratic programs can often be transformed into semidefinite programs in the way described above. The semidef-
inite optimization influences at the point the quality of the solution where we used and bounded arccos.

11

Let α∗ be the largest value for α with arccos z
π ≥ α(1−z)

2 . The smaller the ε, the closer can the approximation ratio of
SDCUT be brought to 1/α∗.

The graph has n nodes, but we apparently only did a single random experiment, namely in line (4) of SDCUT. Did we
separate n objects by a single coin toss? No, because we actually selected an n-dimensional vector! In order to determine
its components, at least n coin tosses are necessary.

The expected approximation ratio of 1.139 presented here is the best known so far. Since the algorithm can be deran-
domized (in an involved way) [MR99], the value is also the best known for deterministic approximation algorithms for
MAXCUT. Håstad has shown that P = NP if there is an approximation algorithm for MAXCUT with an approximation
ratio of ρ < 17

16 = 1.0625.
MAXCUT is a so-called symmetric problem since the set U in (U, Ū) can be switched to Ū without changing the value

of the found solution. In contrast, MAXSAT is an asymmetric problem because in general we cannot reverse the obtained
truth assignment for the variables without changing the solution.

Since 1994, the semidefinite optimization approach has been successfully used for many other problems such as graph
coloring problems, graph bisection problems, and the maximum independent set problem, where the best algorithms are
now based on semidefinite optimization.

References
[AW00] T. Asano and D.P. Williamson. Improved approximation algorithms for max sat. In Proc. of the 11th ACM Symp. on Discrete

Algorithms (SODA), pages 96–105, 2000.

[Fei98] U. Feige. A threshold of ln n for approximating set cover. Journal of the ACM, 45(4):634–652, 1998.

[GJ79] M.R. Garey and D.S. Johnson. Computers and Intractability – A Guide to the Theory of NP-Completeness. Freeman, New
York, 1979.

[GW95] M.X. Goemans and D.P. Williamson. Improved approximation algorithms for maximum cut and satisfiability problems using
semidefinite programming. Journal of the ACM, 42:1115–1145, 1995.

[Kar91] H. Karloff. Linear Programming. Birkhäuser, Boston, 1991.

[MR99] S. Mahajan and H. Ramesh. Derandomizing semidefinite programming based approximation algorithms. SIAM Journal on
Computing, 28:1641–1663, 1999.

[RT87] P. Raghavan and C.D. Thompson. Randomized rounding: A technique for provably good algorithms and algorithmic proofs.
Combinatorica, 7:365–374, 1987.

[TS97] C.-P. Teo and J. Sethuraman. LP-based approach to optimal stable matchings. In Proc. of the ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 710–719, 1997.

[WSV00] H. Wolkowicz, R. Saigal, and L. Vandenberghe, editors. Handbook of Semidefinite Programming. Kluwer, 2000.

12

