5 Randomized metric reduction

In this chapter we are going to examine a randomized technique to embed an arbitrary metric into a tree-metric with low distortion. The technique presented here, which is based on Bartals work, was developed by Fakcharoenphol, Rao and Talwar [4] and is suitable for a large class of combinatorial optimization problems. For all of the applications presented here, no better approximation algorithms are known so far.

5.1 Notation

A metric (V, d) is defined by a set of points V (also called nodes) and a distance measure d with the following properties

1. $d(v, v)=0$ for all $v \in V$,
2. $d(v, w)>0$ for all $v, w \in V$ with $v \neq w$,
3. $d(v, w)=d(w, v)$ for all $v, w \in V$ (symmetry), and
4. $d(u, w) \leq d(u, v)+d(v, w)$ for all $u, v, w \in V$ (triangle inequality).
W.l.o.g. let the minimum distance of two nodes be 1 , and let Δ be the diameter of the metric (i.e., the maximum distance of all pairs of nodes). Further, we assume w.l.o.g. that $\Delta=2^{\delta}$ for some $\delta \in \mathbb{N}$.

A metric $\left(V, d^{\prime}\right)$ dominates another metric (V, d) if for all $v, w \in V, d^{\prime}(v, w) \geq d(v, w)$. The goal is to find a dominating tree metric for any given metric.

Let \mathcal{S} be a family of metrics over V, and let \mathcal{D} be a probability distribution over \mathcal{S}. We say that $(\mathcal{S}, \mathcal{D})$ approximates metric $(V, d) \alpha$-probabilistically if every metric in \mathcal{S} dominates (V, d) and for every pair u, v of nodes in V it holds that $\mathbb{E}_{d^{\prime} \in(\mathcal{S}, \mathcal{D})}\left[d^{\prime}(u, v)\right] \leq \alpha \cdot d(u, v)$.

An r-decomposition of (V, d), with $r \in \mathbb{N}$, is a partition of V into groups such that for every group G there is a node $v \in V$ with $d(v, w)<r$ for all $w \in G$ (i.e., the radius of the group is less than r and therefore its diameter is less than $2 r$). A hierarchical decomposition of (V, d) is a series of $\delta+1$ decompositions $D_{0}, D_{1}, \ldots, D_{\delta}$ with the property that

- $D_{\delta}=\{V\}$ is the trivial partition (all nodes are in one group), and
- D_{i} is a 2^{i}-decomposition and refinement of D_{i+1} (i.e., groups in D_{i+1} are divided into further subgroups).

Each group in D_{0} has radius less than 1 and therefore consists of a single node.

5.2 From decompositions to trees

A hierarchical decomposition defines a laminar family (i.e., a set of subsets $\mathcal{F} \subseteq 2^{V}$ with the property that for all $A, B \in \mathcal{F}$, $A \subseteq B$ or $B \subseteq A$ or $A \cap B=\emptyset$) and can be represented by a decomposition tree as follows. For every i, every group $G \in D_{i}$ represents a node in that tree and the children of G are all groups $G^{\prime} \in D_{i-1}$ that are contained in G. The root is the node representing V while the leaves are formed by groups containing only a single node (cf. Fig. 1).

Let the edges of a node $S \in D_{i}$ to any of its children in the decomposition tree T have length 2^{i} (which is an upper bound for the radius of S). This induces a distance function $d_{T}(\cdot, \cdot)$ on V with $d_{T}(v, w)$ being equal to the length of the unique path from the node $\{v\} \in D_{0}$ to the node $\{w\} \in D_{0}$ in T. It is not difficult to check that d_{T} is a metric. Further, $d_{T}(v, w) \geq d(v, w)$ for all $v, w \in V$ since the least common ancestor of v and w in T must represent a set with diameter at least $d(v, w)$. In the following we will prove upper bounds for $d_{T}(v, w)$ as well. A pair (v, w) is at level i if v and w appear the last time together in a group $G \in D_{i}$. If (v, w) is at level i, then $d_{T}(v, w)=2 \sum_{j=1}^{i} 2^{j} \leq 2^{i+2}$.

5.3 Decomposition of the set of nodes

Consider the following random experiment to create a hierarchical decomposition of (V, d), where $V=\left\{v_{1}, \ldots, v_{n}\right\}$. Choose a permutation π uniformly at random out of the set of all permutations of $\{1, \ldots, n\}$, and choose β uniformly at random in $[1,2]$. Then, for every i, we compute D_{i} out of D_{i+1} as follows.

Set $\beta_{i}:=2^{i-1} \beta$. Let S be a group in D_{i+1}. Every node $u \in S$ gets assigned to the first node $v \in V$ (regarding π) which is closer than β_{i} to u. This node is declared as u 's center. In this way, S is cut into several groups in D_{i}. Note that the center of a group S does not have to be part of S and that there might be several groups in D_{i} with the same center,

Figure 1: From a laminar family to a decomposition-tree.
which is the case if the nodes already belong to different groups in D_{i+1}. Furthermore, $\beta_{i} \leq 2^{i}$ and therefore the radius of all groups in D_{i} is less than 2^{i} which leads to a 2^{i}-decomposition. The formal decomposition algorithm is shown in Figure 2.

```
Algorithm Partition( \(V, d\) ):
choose a random permutation \(\pi\) of \(\{1, \ldots, n\}\)
choose \(\beta\) uniformly at random from \([1,2]\)
\(D_{\delta}:=\{V\} ; i:=\delta-1\)
while \(D_{i+1}\) contains a group with more than one node do
    \(\beta_{i}:=2^{i-1} \beta\)
    for \(\ell:=1\) to \(n\) do
        for every \(S \in D_{i+1}\) do
            create a new group with all thus far unassigned nodes in \(S\)
            which are closer to \(v_{\pi(\ell)}\) than \(\beta_{i}\)
    \(i:=i-1\)
```

Figure 2: The partitioning algorithm

Algorithm 2 can be implemented in a straight-forward way with runtime $O\left(n^{3}\right)$. With specific data structures one can decrease the runtime to $O\left(n^{2}\right)$, which is linear in the input size since d usually needs complexity $\Theta\left(n^{2}\right)$ to be described properly.

Fix a pair (u, v). Now, we show that the expectation of $d_{T}(u, v)$ is bounded by $O(d(u, v) \log n)$. Considering the discussion above we get

$$
\mathbb{E}\left[d_{T}(u, v)\right] \leq \sum_{i=0}^{\delta} \mathbb{P}[(u, v) \text { is at level } i] \cdot 2^{i+2}
$$

Certainly, if $d(u, v) \geq 2^{i+1}$, nodes u and v cannot be contained in the same group in D_{i}. In other words, (u, v) cannot be at level i. Let i^{*} be the smallest i with $d(u, v)<2^{i+1}$. Then $\mathbb{P}[(u, v)$ is at level $i]=0$ for all $i<i^{*}$. Thus, it remains to bound this probability for $i \geq i^{*}$. For any $i^{*} \leq j \leq \delta$ let K_{j}^{u} be the set of nodes in V which are closer than 2^{j} to node u. Further, let $k_{j}^{u}=\left|K_{j}^{u}\right|$. (We set $k_{j}^{u}=0$ for $j<i^{*}$.)

Consider some fixed $i \geq i^{*}$. We say that $v_{\pi(\ell)}$ decides the pair (u, v) at level i if it is the first center that node u or v is assigned to at level i. Note that once π and β are fixed, this center is unique and well defined. Further, we say that
$v_{\pi(\ell)}$ cuts the pair (u, v) at level i if it decides (u, v) at level i and exactly one node from u and v gets assigned to $v_{\pi(\ell)}$. Obviously, if (u, v) is at level $i+1$, then there must be a node w that cuts (u, v) in level i. Therefore it holds

$$
\mathbb{P}[(u, v) \text { is at level } i+1] \leq \sum_{w} \mathbb{P}[w \text { cuts }(u, v) \text { at level } i]
$$

We say that a center w cuts node u from (u, v) at level i if w cuts the pair (u, v) and u is being assigned to w. For each center w we limit the probability for w to cut u from (u, v) at level i. For this we order the centers in K_{i}^{u} in ascending distance to u. Suppose this order is given by $w_{1}, w_{2}, \ldots, w_{k_{i}^{u}}$. In this case, a center w_{s} is able to cut u from (u, v) only if the following holds:

1. $d\left(u, w_{s}\right)<\beta_{i}$,
2. $d\left(v, w_{s}\right) \geq \beta_{i}$, and
3. w_{s} decides (u, v).

From the first two requirements it follows that β_{i} must be in the interval $\left[d\left(u, w_{s}\right), d\left(v, w_{s}\right)\right]$. Due to the triangle inequality it holds $d\left(v, w_{s}\right) \leq d(v, u)+d\left(u, w_{s}\right)$ and therefore the length of the interval $\left[d\left(u, w_{s}\right), d\left(v, w_{s}\right)\right]$ is at most $d(u, v)$. Since β_{i} is chosen uniformly at random from $\left[2^{i-1}, 2^{i}\right]$, the probability for β_{i} to lie in the said interval is at most $d(u, v) / 2^{i-1}$.

Next, we can deduce a probability from requirement (3). Due to the definition of K_{i}^{u} it holds that $d\left(u, w_{s}\right)<\beta_{i}$ and therefore $d\left(u, w_{s^{\prime}}\right)<\beta_{i}$ for all $s^{\prime} \leq s$. The probability that (u, v) is decided by center w_{s} is at most $1 / s$ since π is a random permutation.

Note that the first probability bound only depends on β while the second one only depends on the choice of π. Thus, both probability bounds hold independently and we obtain the following inequalities.

$$
\begin{aligned}
\mathbb{P}[(u, v) \text { is at level } i+1] & \leq \sum_{s=1}^{k_{i}^{u}}\left(d(u, v) / 2^{i-1}\right) \cdot \frac{1}{s}+\sum_{s=1}^{k_{i}^{v}}\left(d(u, v) / 2^{i-1}\right) \cdot \frac{1}{s} \\
& \leq \frac{d(u, v)}{2^{i-1}}\left(\ln k_{i}^{u}+1+\ln k_{i}^{v}+1\right) \leq \frac{d(u, v)(\ln n+1)}{2^{i-2}}
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\mathbb{E}\left[d_{T}(u, v)\right] & \leq \sum_{i=0}^{\delta} \mathbb{P}[(u, v) \text { is at level } i] \cdot 2^{i+2} \\
& \leq \sum_{i=i^{*}}^{\delta} \frac{d(u, v)(\ln n+1)}{2^{i-3}} \cdot 2^{i+2}=O(\delta \log n \cdot d(u, v))
\end{aligned}
$$

Thus, the expected length of $d_{T}(u, v)$ is in $O(\log \Delta \cdot \log n \cdot d(u, v))$.
To show the bound of $O(\log n)$ we observe that the amount of centers over all δ levels is n. A more detailed analysis of the procedure above will then provide the desired result, as shown next.

Let us fix a $i \geq i^{*}+3$. Due to the definition of i^{*} it follows that $d(u, v)<2^{i-2}$. Additionally, for any $w \in K_{i-2}^{u}$ it holds $d(v, w) \leq d(v, u)+d(u, w)<2^{i-2}+2^{i-2}=2^{i-1} \leq \beta_{i}$. Hence, w cannot be the center cutting u from (u, v) since this would require the three requirements above to be fulfilled. Therefore, no center of $w_{1}, w_{2}, \ldots, w_{k_{i-2}}^{u}$ is able to cut u from (u, v) at level i. It follows that the probability for u to be cut from (u, v) is at most

$$
\sum_{s=k_{i-2}^{u}+1}^{k_{i}^{u}}\left(d(u, v) / 2^{i-1}\right) \cdot \frac{1}{s}=\left(d(u, v) / 2^{i-1}\right) \cdot\left(H_{k_{i}^{u}}-H_{k_{i-2}^{u}}\right)
$$

where $H_{n}=\sum_{i=1}^{n} \frac{1}{i}$ is the harmonic number. Since (u, v) is cut if either u or v gets cut from (u, v), the probability for the pair (u, v) to be cut in level i is upper bounded by

$$
\frac{d(u, v)}{2^{i-1}} \cdot\left[H_{k_{i}^{u}}+H_{k_{i}^{v}}-H_{k_{i-2}^{u}}-H_{k_{i-2}^{v}}\right] .
$$

For $i \in\left\{i^{*}, \ldots, i^{*}+2\right\}$ we can bound this probability by the formula

$$
\frac{d(u, v)}{2^{i-1}} \cdot\left(H_{k_{i}^{u}}+H_{k_{i}^{v}}\right) \leq \frac{d(u, v)}{2^{i-1}} \cdot 2 H_{n}
$$

The expectation of $d_{T}(u, v)$ is therefore

$$
\begin{aligned}
\mathbb{E}\left[d_{T}(u, v)\right] \leq & \sum_{i=0}^{\delta} \mathbb{P}[(u, v) \text { is at level } i] \cdot 2^{i+2} \\
\leq & \sum_{i=i^{*}}^{i^{*}+2} 2 H_{n} \cdot \frac{d(u, v)}{2^{i-1}} \cdot 2^{i+2} \\
& +\sum_{i=i^{*}+3}^{\delta}\left[H_{k_{i}^{u}}+H_{k_{i}^{v}}-H_{k_{i-2}^{u}}-H_{k_{i-2}^{v}}\right] \cdot \frac{d(u, v)}{2^{i-1}} \cdot 2^{i+2} \\
\leq & 8 d(u, v)\left(3 \cdot 2 H_{n}+H_{k_{\delta}^{u}}+H_{k_{\delta}^{v}}+H_{k_{\delta-1}^{u}}+H_{k_{\delta-1}^{v}}\right) \\
\leq & 8 d(u, v) \cdot 10 H_{n} \\
\leq & 80(\ln n+1) \cdot d(u, v) .
\end{aligned}
$$

This shows that the expected value of $d_{T}(u, v)$ is at most $O(d(u, v) \cdot \log n)$ for any pair (u, v). Hence, it holds:
Theorem 5.1 The probability distribution over the tree metric defined by the partitioning algorithm $O(\log n)$-probabilistically approximates metric d.

5.4 Applications

Many problems are much easier to solve in tree metrics than in others. A few of these are presented below.

The k-median problem

An instance of the k-median problem consists of a set of points $V=\left\{v_{1}, \ldots, v_{n}\right\}$ and a metric d. The goal is to find a set $M \subseteq V$ of k median points such that the sum of the distances of all nodes to its closest median-points is minimal, i.e.

$$
\sum_{i=1}^{n} \min _{w \in M} d\left(v_{i}, w\right)
$$

For trees we know optimal algorithms. In the case of a tree-metric we assume d is given as an undirected graph $G=(V, E)$ with edge lengths given by $d: E \rightarrow \mathbb{R}_{+}$. Here, G represents a tree and the distance $d(u, v)$ for an arbitrary pair $u, v \in V$ is defined as the length of the unique path from u to v in G. For this case Tamir [6] presented a precise algorithm, which is based on dynamic programming and runs in time $O\left(k \cdot n^{2}\right)$. If k is constant, even precise algorithms with runtime $O(n \cdot \operatorname{polylog}(n))$ are known [2]. Hence, we obtain the following result.

Theorem 5.2 With Tamir's algorithm one can solve the k-median problem for arbitrary metrics in time $O\left(k \cdot n^{2}\right)$ with an expected approximation ratio of $O(\log n)$.

Proof. Consider the following algorithm:
Given an arbitrary instance (V, d) where d is a metric, reduce d to a tree metric d^{\prime} using algorithm Partition (V, d), solve the problem on d^{\prime} using Tamir's algorithm, and return the objective value obtained by that algorithm.

As we will show, this algorithm has an expected approximation ratio of $O(\log n)$, which proves the theorem. For a given metric d let

$$
O P T_{d}=\min _{M \subseteq V,|M|=k} \sum_{i=1}^{n} \min _{w \in M} d\left(v_{i}, w\right)
$$

be the optimal value of the k-median problem regarding this metric. Let \mathcal{B} be a family of tree metrics over V and \mathcal{D} a probability distribution over \mathcal{B}. Assume $(\mathcal{B}, \mathcal{D})$ approximates $(V, d) \alpha$-probabilistically. Then it holds for any $d^{\prime} \in \mathcal{B}$ that
(V, d^{\prime}) dominates (V, d) and thus $O P T_{d^{\prime}} \geq O P T_{d}$. Furthermore, for the optimal set of medians M concerning d it holds that $O P T_{d^{\prime}} \leq \sum_{i=1}^{n} \min _{w \in M} d^{\prime}\left(v_{i}, w\right)$. Hence,

$$
\begin{aligned}
\mathbb{E}\left[O P T_{d^{\prime}}\right] & \leq \mathbb{E}\left[\sum_{i=1}^{n} \min _{w \in M} d^{\prime}\left(v_{i}, w\right)\right] \\
& =\sum_{i=1}^{n} \mathbb{E}\left[\min _{w \in M} d^{\prime}\left(v_{i}, w\right)\right] \\
& \stackrel{(*)}{\leq} \sum_{i=1}^{n} \min _{w \in M} \mathbb{E}\left[d^{\prime}\left(v_{i}, w\right)\right] \\
& \leq \sum_{i=1}^{n} \min _{w \in M} \alpha \cdot d\left(v_{i}, w\right)=\alpha \cdot O P T_{d} .
\end{aligned}
$$

Inequality $(*)$ follows since it is known that for any matrix $A=\left(a_{i, j}\right) \in \mathbb{R}^{(m, k)}$,

$$
\sum_{i=1}^{m} \min \left\{a_{i, 1}, \ldots, a_{i, k}\right\} \leq \min \left\{\sum_{i=1}^{m} a_{i, 1}, \ldots, \sum_{i=1}^{m} a_{i, k}\right\}
$$

Hence, $\mathbb{E}\left[O P T_{d^{\prime}}\right] \in\left[O P T_{d}, \alpha \cdot O P T_{d}\right]$. Therefore, the expected approximation ratio of our algorithm is $\alpha=O(\log n)$.
If a k-median set is required instead as an output, we can just output the median set M^{\prime} found for d^{\prime}, because due to the fact that d^{\prime} dominates d it holds that

$$
\sum_{i=1}^{n} \min _{w \in M^{\prime}} d\left(v_{i}, w\right) \leq \sum_{i=1}^{n} \min _{w \in M^{\prime}} d^{\prime}\left(v_{i}, w\right)=O P T_{d^{\prime}}
$$

so the objective value for M^{\prime} w.r.t. d is at most as high as the objective value for M^{\prime} w.r.t. d^{\prime}, which means that on expectation, it is still at most $O\left(O P T_{d} \log n\right)$.

The group-Steiner-tree problem

An instance of the group-Steiner-tree problem consists of a connected undirected graph $G=(V, E)$ with edge costs given by $c: E \rightarrow \mathbb{R}_{+}$and k subsets $V_{1}, \ldots, V_{k} \subseteq V$. The goal is to find a tree $T=\left(V^{\prime}, E^{\prime}\right)$ in G containing at least one element of each subset and having minimum edge costs $\sum_{e \in E^{\prime}} c(e)$.

Garg, Konjevod and Ravi [5] presented a $O(\log k \log n)$-approximation algorithm for trees, which implies the following result for arbitrary graphs.

Theorem 5.3 Using the GKR-algorithm one can solve the group-Steiner-tree problem for arbitrary graphs in polynomial time with an expected approximation ratio of $O\left(\log k \log ^{2} n\right)$.

Proof. Let us use the same approach as in the previous problem:
Given an arbitrary instance $\left(G, c, V_{1}, \ldots, V_{k}\right)$, define $d(v, w)$ as the length of the shortest path from v to w in G with respect to the edge costs c. Then reduce d to a tree metric d^{\prime} using algorithm $\operatorname{Partition}(V, d)$, where d^{\prime} represents the shortest path metric in the decomposition tree $D T=\left(V^{\prime}, E^{\prime}\right)$. Let $c^{\prime}: E^{\prime} \rightarrow \mathbb{N}$ denote the costs of the edges of $D T$ as defined in Section 5.2. Then we use the GKR-algorithm to solve the group-Steiner-tree problem for $\left(D T, c^{\prime}, V_{1}, \ldots, V_{k}\right)$ where the sets V_{i} refer to the singletons at level D_{0} in $D T$, and return the objective value obtained by that algorithm.

As we will show, this algorithm has an expected approximation ratio of $O\left(\log k \log ^{2} n\right)$, which proves the theorem. Let $T=(U, F)$ be the optimal group-Steiner-tree in G, and let T be organized in a unique way from some fixed node $r \in U$, which we declare as its root. For every $i \in\{1, \ldots, k\}$, let $v_{i} \in U$ be the first node in V_{i} encountered in T when performing an inorder traversal of T. Certainly, there must be such a node for each i, otherwise T would not be a group-Steiner-tree. Also, all leaves in T must be one of the v_{i} 's because otherwise T would be reducible. Suppose for simplicity that the v_{i} 's are visited by the inorder traversal in the order $v_{1}, v_{2}, \ldots, v_{k}$. Let $p(v, w)$ be the unique path from v to w in T, and let
$c(p(v, w))$ be sum of the costs of the edges in p. Since the paths $p\left(v_{1}, v_{2}\right), p\left(v_{2}, v_{3}\right), \ldots, p\left(v_{k-1}, v_{k}\right), p\left(v_{k}, v_{1}\right)$ stitched together give an Euler tour of T, it holds for $v_{k+1}=v_{1}$ that

$$
\sum_{i=1}^{k} c\left(p\left(v_{i}, v_{i+1}\right)\right)=2 \sum_{e \in F} c(e)
$$

On the other hand, $c\left(p\left(v_{i}, v_{i+1}\right)\right) \leq d\left(v_{i}, v_{i+1}\right)$, so

$$
\sum_{i=1}^{k} c\left(p\left(v_{i}, v_{i+1}\right)\right) \leq \sum_{i=1}^{k} d\left(v_{i}, v_{i+1}\right)
$$

which implies that

$$
\sum_{i=1}^{k^{\prime}-1} d\left(v_{i}, v_{i+1}\right) \leq 2 \sum_{e \in F} c(e)
$$

Moreover, the union of the edges on the shortest paths for the pairs $\left(v_{i}, v_{i+1}\right)$ results in a connected subgraph of G with costs at least equal to the ones of T. Hence,

$$
\sum_{e \in F} c(e) \leq \sum_{i=1}^{k^{\prime}-1} d\left(v_{i}, v_{i+1}\right)
$$

Therefore, altogether,

$$
\sum_{e \in F} c(e) \leq \sum_{i=1}^{k^{\prime}-1} d\left(v_{i}, v_{i+1}\right) \leq 2 \sum_{e \in F} c(e)
$$

Now, let $T^{\prime}=\left(U^{\prime}, F^{\prime}\right)$ be the optimal group-Steiner-tree in the decomposition tree $D T$, and let w_{1}, \ldots, w_{ℓ} be its leaves. Obviously, each leaf must belong to some group V_{i}, and each group V_{i} has at most one leaf in T because otherwise T^{\prime} can be reduced. Hence, $\ell=k$. For simplicity, suppose that $w_{i} \in V_{i}$.

Using the inequalities for T and the fact that d^{\prime} dominates d, it holds that

$$
\begin{aligned}
\sum_{e \in F^{\prime}} c^{\prime}(e) & \geq \frac{1}{2} \sum_{i=1}^{k-1} d^{\prime}\left(w_{i}, w_{i+1}\right) \geq \frac{1}{2} \sum_{i=1}^{k-1} d\left(w_{i}, w_{i+1}\right) \\
& \geq \frac{1}{2} \sum_{e \in F} c(e)
\end{aligned}
$$

Thus, the cost of T^{\prime} regarding d^{\prime} is at least as high as the cost of an optimal group-Steiner-tree in G. Furthermore, for the unique minimum tree $T^{\prime \prime}=\left(U^{\prime \prime}, F^{\prime \prime}\right)$ connecting the nodes v_{i}, \ldots, v_{k} in $D T$ it holds that

$$
\begin{aligned}
\mathbb{E}\left[\sum_{e \in F^{\prime \prime}} d^{\prime}(e)\right] & \leq \mathbb{E}\left[\sum_{i=1}^{k-1} d^{\prime}\left(v_{i}, v_{i+1}\right)\right] \\
& =\sum_{i=1}^{k-1} \mathbb{E}\left[d^{\prime}\left(v_{i}, v_{i+1}\right)\right] \\
& \leq \sum_{i=1}^{k-1} \alpha d\left(v_{i}, v_{i+1}\right) \\
& \leq 2 \alpha \sum_{e \in F} c(e)
\end{aligned}
$$

Since the GKR-algorithm ensures that for the optimal tree T_{OPT} in $D T, \sum_{e \in T^{\prime}} c^{\prime}(e) \leq \beta \sum_{e \in T_{\mathrm{OPT}}} c^{\prime}(e)$, with $\beta=$ $O(\log k \log n)$, we observe that

$$
\mathbb{E}\left[\sum_{e \in F^{\prime}} c^{\prime}(e)\right] \in\left[\frac{1}{2} \sum_{e \in F} c(e), 2 \alpha \beta \sum_{e \in F} c(e)\right] .
$$

Therefore, we obtain a $O\left(\log k \log ^{2} n\right)$-approximation.
If instead of the objective value we want the group-Steiner-tree as output of our algorithm, we simply output the any tree $\hat{T}=(\hat{U}, \hat{F})$ in G containing w_{1}, \ldots, w_{k} that can be obtained from the subgraph resulting from the union of the shortest paths for the pairs $\left(w_{1}, w_{2}\right),\left(w_{2}, w_{3}\right), \ldots,\left(w_{k-1}, w_{k}\right),\left(w_{k}, w_{1}\right)$ in G. For this tree we get

$$
\begin{aligned}
\sum_{\{u, v\} \in \hat{F}} c(u, v) \leq \sum_{i=1}^{k} d\left(w_{i}, w_{i+1}\right) & \\
& \leq \sum_{i=1}^{k} d^{\prime}\left(w_{i}, w_{i+1}\right) \leq 2 \sum_{e \in F^{\prime}} c^{\prime}(e)
\end{aligned}
$$

So on expectation, the cost of \hat{T} is still at most $O\left(O P T_{d} \log k \log ^{2} n\right)$.

Buy en bloc network design

A problem instance consists of an undirected graph $G=(V, E)$ with edge lengths $\ell: E \rightarrow \mathbb{R}_{+}$and a set of source-targetpairs (s, t) with flow requirements $d(s, t)$. For each source-target-pair a path through G must be chosen. One achieves this by buying/renting cable along the edges. Exactly k types of cable exist, where type i has capacity u_{i} and $\operatorname{cost} c_{i}$ per unit of length. The goal is to buy/rent enough cable such that a flow of $d(s, t)$ is possible for every source-target-pair (s, t) with costs as low as possible.

Awerbuch and Azar [1] presented a $O(1)$-approximation algorithm for trees. Consequently, we obtain the following theorem.

Theorem 5.4 By using the Awerbuch-Azar algorithm one can solve the buy en bloc network design problem for arbitrary graphs in polynomial time with an expected approximation ratio of $O(\log n)$.

Vehicle routing

A problem instance consists of a metric (V, d). In this metric, n objects are placed which need to be transported to n target points. This is done by a waggon driving from point to point in V with a cargo capacity of k objects. The goal is to minimize the overall path length of the waggon needed to deliver all objects.

Charikar et al. [3] presented an $O(1)$-approximation algorithm for trees. Consequently, we obtain the following theorem.

Theorem 5.5 By using the CCGG-algorithm one can solve the vehicle routing problem for arbitrary graphs in polynomial time with an expected approximation ratio of $O(\log n)$.

References

[1] B. Awerbuch and Y. Azar. Buy-at-bulk network design. In Proc. of the 38th IEEE Symp. on Foundations of Computer Science (FOCS), pages 542-547, 1997.
[2] R. Benkoczi and B. Bhattacharya. A new template for solving p-median problems for trees in sub-quadratic time. In Proc. of the European Symposium on Algorithms (ESA), pages 271-282, 2005.
[3] M. Charikar, C. Chekuri, A. Goel, and S. Guha. Rounding via trees: Deterministic approximation algorithms for group Steiner trees and k-median. In Proc. of the 30th ACM Symp. on Theory of Computing (STOC), pages 114-123, 1998.
[4] J. Fakcharoenphol, S. Rao, and K. Talwar. A tight bound on approximating arbitrary metrics by tree metrics. In Proc. of the 35th ACM Symp. on Theory of Computing (STOC), pages 448-455, 2003.
[5] N. Garg, G. Konjevod, and R. Ravi. A polylogarithmic approximation algorithm for the group Steiner tree problem. Journal of Algorithms, 37:66-84, 2000.
[6] A. Tamir. An $o\left(p n^{2}\right)$ algorithm for the p-median and related problems on tree graphs. Operations Research Letters, 19(2):59-64, 1996.

