
21.06.2017 Kapitel 5 1

Kapitel 5:

Local Search

Inhalt:

• Gradient Descent (Hill Climbing)

• Metropolis Algorithm and Simulated Annealing

• Local Search in Hopfield Neural Networks

• Local Search for Max-Cut

– Single-flip neighborhood

– K-flip neighborhood

– KL-neighborhood

• Nash Equilibria

2

Local Search

Local search. Algorithm that explores the space of possible solutions in

sequential fashion, moving from a current solution to a "nearby" one.

1) Neighbor relation. Let S S' be a neighbor relation for the problem.

2) Choice Rule. Rule for choosing a neighboring solution at each step.

Gradient descent. Let S denote current solution. If there is a neighbor

S' of S with strictly lower cost, C(S’) < C(S), replace S with the

neighbor whose cost is as small as possible. Otherwise, terminate the

algorithm.

A funnel A jagged funnel

3

Gradient Descent: Vertex Cover

VERTEX-COVER. Given a graph G = (V, E), find a subset of nodes S of

minimal cardinality such that for each u-v in E, either u or v (or both)

are in S.

Neighbor relation. S S' if S' can be obtained from S by adding/

deleting a single node to/from the cover. Each vertex cover S has at

most n neighbors.

Gradient descent. Start with S = V. If there is a neighbor S' that is a

vertex cover and has lower cardinality, replace S with S'.

Remark. Algorithm terminates after at most n steps since each update

decreases the size of the cover by one.

4

Gradient Descent: Vertex Cover

Local optimum. No neighbor is strictly better.

optimum = center node only

local optimum = all other nodes

optimum = all nodes on left side

local optimum = all nodes on right side

optimum = even nodes

local optimum = omit every third node

21.06.2017 Kapitel 5 5

Kapitel 5:

Local Search

Inhalt:

• Gradient Descent (Hill Climbing)

• Metropolis Algorithm and Simulated Annealing

• Local Search in Hopfield Neural Networks

• Local Search for Max-Cut

– Single-flip neighborhood

– K-flip neighborhood

– KL-neighborhood

• Nash Equilibria

6

Metropolis Algorithm

Metropolis algorithm. [Metropolis, Rosenbluth, Rosenbluth, Teller, Teller 1953]

 Simulate behavior of a physical system according to principles of

statistical mechanics.

 Globally biased toward "downhill" steps, but occasionally makes

"uphill" steps to break out of local minima.

Gibbs-Boltzmann function. The probability of finding a physical system

in a state with energy E is proportional to e -E / (kT), where T > 0 is

temperature and k is a constant.

 For any temperature T > 0, function is monotone decreasing function

of energy E.

 System more likely to be in a lower energy state than higher one.

– T large: high and low energy states have roughly same probability

– T small: low energy states are much more probable

7

Metropolis Algorithm

Metropolis algorithm.

 Given a fixed temperature T, maintain current state S.

 Randomly perturb current state S to new state S' N(S).

 If E(S') E(S), update current state to S'

Otherwise, update current state to S' with probability e - E / (kT),

where E = E(S') - E(S) > 0.

Theorem. Let fS(t) be fraction of first t steps in which simulation is in

state S. Then, assuming some technical conditions, with probability 1:

Intuition. Simulation spends roughly the right amount of time in each

state, according to Gibbs-Boltzmann equation.

. where

,)(lim

)('

)(/)'(

)(/)(1

SNS

kTSE

kTSE

ZS
t

eZ

etf

8

Simulated Annealing

Simulated annealing.

 T large probability of accepting an uphill move is large.

 T small uphill moves are almost never accepted.

 Idea: turn knob to control T.

 Cooling schedule: T = T(i) at iteration i.

Physical analog.

 Take solid and raise it to high temperature, we do not expect it to

maintain a nice crystal structure.

 Take a molten solid and freeze it very abruptly, we do not expect to

get a perfect crystal either.

 Annealing: cool material gradually from high temperature, allowing

it to reach equilibrium at succession of intermediate lower

temperatures.

21.06.2017 Kapitel 5 9

Kapitel 5:

Local Search

Inhalt:

• Gradient Descent (Hill Climbing)

• Metropolis Algorithm and Simulated Annealing

• Local Search in Hopfield Neural Networks

• Local Search for Max-Cut

– Single-flip neighborhood

– K-flip neighborhood

– KL-neighborhood

• Nash Equilibria

10

Hopfield Neural Networks

Hopfield networks. Simple model of an associative memory, in which a

large collection of units are connected by an underlying network, and

neighboring units try to correlate their states.

Input: Graph G = (V, E) with integer edge weights w.

Configuration. Node assignment su = ± 1 for all u є V.

Intuition. If wuv < 0, then u and v want to have the same state;

if wuv > 0 then u and v want different states.

Note. In general, no configuration respects all constraints.

5

7

6

positive or negative

11

Hopfield Neural Networks

Def. With respect to a configuration S, edge e = (u, v) is good if

we su sv < 0. That is, if we < 0 then su = sv; if we > 0, su sv.

Def. With respect to a configuration S, a node u is satisfied if the

total absolute weight of incident good edges total absolute weight of

incident bad edges.

Def. A configuration is stable if all nodes are satisfied.

Goal. Find a stable configuration, if such a configuration exists.

-5

-10

4

-1

-1

bad edge

 we su sv
v: e(u,v) E

 0

satisfied node: 5 - 4 - 1 - 1 < 0

12

Hopfield Neural Networks

Goal. Find a stable configuration, if such a configuration exists.

State-flipping algorithm. Repeated flip state of an unsatisfied node.

Hopfield-Flip(G, w) {

S arbitrary configuration

while (current configuration is not stable) {

u unsatisfied node

su = -su
}

return S

}

13

State Flipping Algorithm

unsatisfied node

10 - 8 > 0

unsatisfied node

8 - 4 - 1 - 1 > 0

stable

14

Hopfield Neural Networks

Claim. State-flipping algorithm terminates with a stable configuration

after at most W = e|we| iterations.

Pf attempt. Consider measure of progress (S) = # satisfied nodes.

15

Hopfield Neural Networks

Claim. State-flipping algorithm terminates with a stable configuration

after at most W = e|we| iterations.

Pf. Consider measure of progress (S) = e good |we|.

 Clearly 0 (S) W.

 We show (S) increases by at least 1 after each flip.

When u flips state:

– all good edges incident to u become bad

– all bad edges incident to u become good

– all other edges remain the same

(S ') (S) | we |
e: e (u,v) E
 e is bad

 | we |
e: e (u,v) E
 e is good

 (S) 1

u is unsatisfied

21.06.2017 Kapitel 5 16

Fragen?

