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Local Search

Local search. Algorithm that explores the space of possible solutions in 

sequential fashion, moving from a current solution to a "nearby" one.

1) Neighbor relation. Let S  S' be a neighbor relation for the problem.

2) Choice Rule. Rule for choosing a neighboring solution at each step.

Gradient descent. Let S denote current solution. If there is a neighbor 

S' of S with strictly lower cost, C(S’) < C(S), replace S with the 

neighbor whose cost is as small as possible. Otherwise, terminate the 

algorithm.

A funnel A jagged funnel
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Gradient Descent:  Vertex Cover

VERTEX-COVER. Given a graph G = (V, E), find a subset of nodes S of 

minimal cardinality such that for each u-v in E, either u or v (or both) 

are in S.

Neighbor relation. S  S' if S' can be obtained from S by adding/ 

deleting a single node to/from the cover. Each vertex cover S has at 

most n neighbors.

Gradient descent. Start with S = V.  If there is a neighbor S' that is a 

vertex cover and has lower cardinality, replace S with S'.

Remark. Algorithm terminates after at most n steps since each update 

decreases the size of the cover by one.
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Gradient Descent:  Vertex Cover

Local optimum.  No neighbor is strictly better.

optimum = center node only

local optimum = all other nodes

optimum = all nodes on left side

local optimum = all nodes on right side

optimum = even nodes

local optimum = omit every third node
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Metropolis Algorithm

Metropolis algorithm.  [Metropolis, Rosenbluth, Rosenbluth, Teller, Teller 1953]

 Simulate behavior of a physical system according to principles of 

statistical mechanics.

 Globally biased toward "downhill" steps, but occasionally makes 

"uphill" steps to break out of local minima.

Gibbs-Boltzmann function.  The probability of finding a physical system 

in a state with energy E is proportional to e -E / (kT), where T > 0 is 

temperature and k is a constant.

 For any temperature T > 0, function is monotone decreasing function 

of energy E.

 System more likely to be in a lower energy state than higher one.

– T large:  high and low energy states have roughly same probability

– T small:  low energy states are much more probable
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Metropolis Algorithm

Metropolis algorithm.

 Given a fixed temperature T, maintain current state S.

 Randomly perturb current state S to new state S'  N(S).

 If E(S')  E(S), update current state to S'

Otherwise, update current state to S' with probability e - E / (kT), 

where E = E(S') - E(S) > 0.

Theorem.  Let fS(t) be fraction of first t steps in which simulation is in 

state S. Then, assuming some technical conditions, with probability 1:

Intuition.  Simulation spends roughly the right amount of time in each 

state, according to Gibbs-Boltzmann equation.
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Simulated Annealing

Simulated annealing.

 T large    probability of accepting an uphill move is large.

 T small   uphill moves are almost never accepted.

 Idea:  turn knob to control T.

 Cooling schedule:  T = T(i) at iteration i.

Physical analog.

 Take solid and raise it to high temperature, we do not expect it to 

maintain a nice crystal structure.

 Take a molten solid and freeze it very abruptly, we do not expect to 

get a perfect crystal either.

 Annealing:  cool material gradually from high temperature, allowing 

it to reach equilibrium at succession of intermediate lower 

temperatures.
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Hopfield Neural Networks

Hopfield networks.  Simple model of an associative memory, in which a 

large collection of units are connected by an underlying network, and 

neighboring units try to correlate their states.

Input:  Graph G = (V, E) with integer edge weights w.

Configuration.  Node assignment su = ± 1 for all u є V.

Intuition.  If wuv < 0, then u and v want to have the same state;

if wuv > 0 then u and v want different states.

Note.  In general, no configuration respects all constraints.

5

7

6

positive or negative
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Hopfield Neural Networks

Def.  With respect to a configuration S, edge e = (u, v) is good if

we su sv < 0. That is, if we < 0 then su = sv; if we > 0, su  sv.

Def.  With respect to a configuration S, a node u is satisfied if the 

total absolute weight of incident good edges  total absolute weight of 

incident bad edges.

Def.  A configuration is stable if all nodes are satisfied.

Goal.  Find a stable configuration, if such a configuration exists.

-5

-10

4

-1

-1

bad edge



 we su sv
v: e(u,v) E

    0

satisfied node:  5 - 4 - 1 - 1 < 0
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Hopfield Neural Networks

Goal.  Find a stable configuration, if such a configuration exists.

State-flipping algorithm.  Repeated flip state of an unsatisfied node.

Hopfield-Flip(G, w) {

S  arbitrary configuration

while (current configuration is not stable) {

u  unsatisfied node

su = -su
}

return S

}
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State Flipping Algorithm

unsatisfied node

10 - 8  >  0

unsatisfied node

8 - 4 - 1 - 1  >  0

stable
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Hopfield Neural Networks

Claim.  State-flipping algorithm terminates with a stable configuration 

after at most W = e|we| iterations.

Pf attempt.  Consider measure of progress (S) = # satisfied nodes.
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Hopfield Neural Networks

Claim.  State-flipping algorithm terminates with a stable configuration 

after at most W = e|we| iterations.

Pf.  Consider measure of progress (S) = e good  |we|.

 Clearly  0  (S)  W.

 We show (S) increases by at least 1 after each flip.

When u flips state:

– all good edges incident to u become bad

– all bad edges incident to u become good

– all other edges remain the same



(S ' )    (S)    | we |
e: e  (u,v) E
   e is bad

    | we |
e: e  (u,v) E
   e is good

        (S)    1

u is unsatisfied
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