Kapitel 5: Local Search

Inhalt:

- Gradient Descent (Hill Climbing)
- Metropolis Algorithm and Simulated Annealing
- Local Search in Hopfield Neural Networks
- Local Search for Max-Cut
- Single-flip neighborhood
- K-flip neighborhood
- KL-neighborhood
- Nash Equilibria

Finding a Nash Equilibrium

Theorem. The following algorithm terminates with a Nash equilibrium.

```
Best-Response-Dynamics (G, c) {
    Pick a path for each agent
    while (not a Nash equilibrium) {
        Pick an agent i who can improve by switching paths
        Switch path of agent i
    }
}
```

Pf. Consider a set of paths P_{1}, \ldots, P_{k}.

- Let x_{e} denote the number of paths that use edge e.

$$
H(0)=0, H(k)=\sum_{i=1}^{k} \frac{1}{i}
$$

- Let $\Phi\left(P_{1}, \ldots, P_{k}\right)=\Sigma_{e \in E} c_{e} \cdot H\left(x_{e}\right)$ be a potential function.
- Since there are only finitely many sets of paths, it suffices to show that Φ strictly decreases in each step.

Finding a Nash Equilibrium

Pf. (continued)

- Consider agent j switching from path P_{j} to path $P_{j}{ }^{\prime}$.
- Agent j switches because

$$
\underbrace{\sum_{f \in P_{j}^{\prime}-P_{j}} \frac{c_{f}}{x_{f}+1}}_{\text {newly incurred cost }}<\underbrace{\sum_{e \in P_{j}-P_{j}^{\prime}} \frac{c_{e}}{x_{e}}}_{\text {cost saved }}
$$

- Φ increases by $\sum_{f \in P_{j}^{\prime}-P_{j}} c_{f}\left[H\left(x_{f}+1\right)-H\left(x_{f}\right)\right]=\sum_{f \in P_{j}^{\prime}-P_{j}} \frac{c_{f}}{x_{f}+1}$
- Φ decreases by $\sum_{e \in P_{j}-P_{j}^{\prime}} c_{e}\left[H\left(x_{e}\right)-H\left(x_{e}-1\right)\right]=\sum_{e \in P_{j}-P_{j}^{\prime}} \frac{c_{e}}{x_{e}}$
- Thus, net change in Φ is negative. "

Bounding the Price of Stability

Claim. Let $C\left(P_{1}, \ldots, P_{k}\right)$ denote the total cost of selecting paths P_{1}, \ldots, P_{k}.
For any set of paths P_{1}, \ldots, P_{k}, we have

$$
C\left(P_{1}, \ldots, P_{k}\right) \leq \Phi\left(P_{1}, \ldots, P_{k}\right) \leq H(k) \cdot C\left(P_{1}, \ldots, P_{k}\right)
$$

Pf. Let x_{e} denote the number of paths containing edge e.

- Let E^{+}denote set of edges that belong to at least one of the paths P_{1}, \ldots, P_{k}.
$C\left(P_{1}, \ldots, P_{k}\right)=\sum_{e \in E^{+}} c_{e} \leq \underbrace{\sum_{e \in E^{+}} c_{e} H\left(x_{e}\right)}_{\Phi\left(P_{1}, \ldots, P_{k}\right)} \leq \sum_{e \in E^{+}} c_{e} H(k)=H(k) C\left(P_{1}, \ldots, P_{k}\right)$

Bounding the Price of Stability

Theorem. There is a Nash equilibrium for which the total cost to all agents exceeds that of the social optimum by at most a factor of $H(k)$.

Pf.

- Let $\left(P_{1}{ }^{*}, \ldots, P_{k}{ }^{*}\right)$ denote set of socially optimal paths.
- Run best-response dynamics algorithm starting from P^{\star}.
- Since Φ is monotone decreasing $\Phi\left(\mathrm{P}_{1}, \ldots, \mathrm{P}_{\mathrm{k}}\right) \leq \Phi\left(\mathrm{P}_{1}{ }^{*}, \ldots, \mathrm{P}_{\mathrm{k}}{ }^{*}\right)$.

$$
C\left(P_{1}, \ldots, P_{k}\right) \leq \Phi\left(P_{1}, \ldots, P_{k}\right) \leq \Phi\left(P_{1}^{*}, \ldots, P_{k}^{*}\right) \leq H(k) \cdot C\left(P_{1}^{*}, \ldots, P_{k}^{*}\right)
$$

Summary

Existence. Nash equilibria always exist for k-agent multicast routing with fair sharing.

Price of stability. Best Nash equilibrium is never more than a factor of $H(k)$ worse than the social optimum.

Fundamental open problem.
(1) Find any Nash equilibria in poly-time.
(2) Find efficiently the Nash equilibria that achieve the bound $H(k)$.

Fragen?

Kapitel 6:
 Randomized Algorithms

Randomization

Algorithmic design patterns.

- Greedy.
- Divide-and-conquer.
- Dynamic programming.
- Approximation.
- Local Search.
- Randomization.
in practice, access to a pseudo-random number generator
Randomization. Allow fair coin flip in unit time.

Why randomize? Can lead to simplest, fastest, or only known algorithm for a particular problem.

Ex. Symmetry breaking protocols, graph algorithms, quicksort, hashing, load balancing, Monte Carlo integration, cryptography.

Kapitel 6: Randomized Algorithms

Inhalt:

- Contention Resolution (symmetry-breaking)
- Global Minimum Cut (contraction algorithm)
- Random Variables and their Expectations
- Guessing Cards
- Coupon Collector
- Max 3-SAT

Contention Resolution in a Distributed System

Contention resolution. Given n processes P_{1}, \ldots, P_{n}, each competing for access to a shared database. If two or more processes access the database simultaneously, all processes are locked out. Devise protocol to ensure all processes get through on a regular basis.

Restriction. Processes can' \dagger communicate.

Challenge. Need symmetry-breaking paradigm.

Contention Resolution: Randomized Protocol

Protocol. Each process requests access to the database at time t with probability $p=1 / n$ independently of the other processes.

Claim. Let $S[i, t]=$ event that process i succeeds in accessing the database at time t. Then $1 /(e \cdot n) \leq \operatorname{Pr}[S(i, t)] \leq 1 /(2 n)$.

Pf. By independence, $\operatorname{Pr}[S(i, t)]=p(1-p)^{n-1}$.

- Setting $p=1 / n$, we have $\operatorname{Pr}[S(i, t)]=1 / n(1-1 / n)^{n-1}$. \cdot

Useful facts from calculus. As n increases from 2, the function:

- ($1-1 / n)^{n}$ converges monotonically from $1 / 4$ up to $1 / e$
- ($1-1 / n)^{n-1}$ converges monotonically from $1 / 2$ down to $1 / e$.

Contention Resolution: Randomized Protocol

Claim. The probability that process i fails to access the database in en rounds is at most $1 / e$. After e. $n(c \ln n)$ rounds, the probability is at most n^{-c}.

Pf. Let $\mathrm{F}[\mathrm{i}, \mathrm{t}]=$ event that process i fails to access database in rounds 1 through \dagger. By independence and previous claim, we have $\operatorname{Pr}[\mathrm{F}(\mathrm{i}, \mathrm{t})] \leq(1-1 /(\mathrm{en}))^{\dagger}$.

- Choose $t=\lceil e \cdot n\rceil$:

$$
\operatorname{Pr}[F(i, t)] \leq\left(1-\frac{1}{e n}\right)^{e n]} \leq\left(1-\frac{1}{e n}\right)^{e n} \leq \frac{1}{e}
$$

- Choose $t=\lceil e \cdot n\rceil\lceil c \ln n\rceil$:

$$
\operatorname{Pr}[F(i, t)] \leq\left(\frac{1}{e}\right)^{c \ln n}=n^{-c}
$$

Contention Resolution: Randomized Protocol

Claim. The probability that all processes succeed within $2 e \cdot n \ln n$ rounds is at least $1-1 / n$.

Pf. Let $\mathrm{F}[\mathrm{t}]=$ event that at least one of the n processes fails to access database in any of the rounds 1 through t.

$$
\operatorname{Pr}[F[t]]=\operatorname{Pr}\left[\bigcup_{i=1}^{n} F[i, t]\right] \underset{\substack{n \\ \text { union bound }}}{\leq \sum_{i=1}^{n} \operatorname{Pr}[F[i, t]] \leq n\left(1-\frac{1}{e n}\right)^{t}} \underset{\text { previous slide }}{\mid}
$$

- Choosing $t=\lceil e n\rceil\lceil 2 \ln n\rceil$ yields $\operatorname{Pr}[F[\dagger]] \leq n \cdot n^{-2}=1 / n$. .

Union bound. Given events $E_{1}, \ldots, E_{n}, \quad \operatorname{Pr}\left[\bigcup_{i=1}^{n} E_{i}\right] \leq \sum_{i=1}^{n} \operatorname{Pr}\left[E_{i}\right]$

