
05.07.2017 Kapitel 5 1

Kapitel 5:

Local Search

Inhalt:

• Gradient Descent (Hill Climbing)

• Metropolis Algorithm and Simulated Annealing

• Local Search in Hopfield Neural Networks

• Local Search for Max-Cut

– Single-flip neighborhood

– K-flip neighborhood

– KL-neighborhood

• Nash Equilibria

2

Finding a Nash Equilibrium

Theorem. The following algorithm terminates with a Nash equilibrium.

Pf. Consider a set of paths P1, …, Pk.

 Let xe denote the number of paths that use edge e.

 Let (P1, …, Pk) = eE ce· H(xe) be a potential function.

 Since there are only finitely many sets of paths, it suffices to show

that strictly decreases in each step.

Best-Response-Dynamics(G, c) {

Pick a path for each agent

while (not a Nash equilibrium) {

Pick an agent i who can improve by switching paths

Switch path of agent i

}

}

H(0) = 0,

H(k)
1

i
i1

k

3

Finding a Nash Equilibrium

Pf. (continued)

 Consider agent j switching from path Pj to path Pj'.

 Agent j switches because

 increases by

 decreases by

 Thus, net change in is negative. ▪

c f

x f 1
f Pj ' Pj

newly incurred cost

ce

xe
e Pj Pj '

cost saved

c f H(x f 1) H(x f)
f Pj ' Pj

c f

x f 1

f Pj ' Pj

 ce H(xe) H(xe 1)
e Pj Pj '

ce

xe

e Pj Pj '

4

Bounding the Price of Stability

Claim. Let C(P1, …, Pk) denote the total cost of selecting paths P1, …, Pk.

For any set of paths P1, …, Pk , we have

Pf. Let xe denote the number of paths containing edge e.

 Let E+ denote set of edges that belong to at least one of the paths

P1, … , Pk.

C(P1, , Pk) ce
eE

 ce H(xe)
eE

(P1, , Pk)

 ce H(k) H(k)
eE

 C(P1, , Pk)

C(P1, , Pk) (P1, , Pk) H(k) C(P1, , Pk)

5

Bounding the Price of Stability

Theorem. There is a Nash equilibrium for which the total cost to all

agents exceeds that of the social optimum by at most a factor of H(k).

Pf.

 Let (P1
*, …, Pk

*) denote set of socially optimal paths.

 Run best-response dynamics algorithm starting from P*.

 Since is monotone decreasing (P1, …, Pk) (P1
*, …, Pk

*).

C(P1, , Pk) (P1, , Pk) (P1*, , Pk *) H(k) C(P1*, , Pk *)

previous claim

applied to P

previous claim

applied to P*

6

Summary

Existence. Nash equilibria always exist for k-agent multicast routing

with fair sharing.

Price of stability. Best Nash equilibrium is never more than a factor of

H(k) worse than the social optimum.

Fundamental open problem.

(1) Find any Nash equilibria in poly-time.

(2) Find efficiently the Nash equilibria that achieve the bound H(k).

05.07.2017 Kapitel 5 7

Fragen?

05.07.2017 Kapitel 6 8

Kapitel 6:

Randomized Algorithms

9

Randomization

Algorithmic design patterns.

 Greedy.

 Divide-and-conquer.

 Dynamic programming.

 Approximation.

 Local Search.

 Randomization.

Randomization. Allow fair coin flip in unit time.

Why randomize? Can lead to simplest, fastest, or only known algorithm

for a particular problem.

Ex. Symmetry breaking protocols, graph algorithms, quicksort, hashing,

load balancing, Monte Carlo integration, cryptography.

in practice, access to a pseudo-random number generator

05.07.2017 Kapitel 6 10

Kapitel 6:

Randomized Algorithms

Inhalt:

• Contention Resolution (symmetry-breaking)

• Global Minimum Cut (contraction algorithm)

• Random Variables and their Expectations
– Guessing Cards

– Coupon Collector

• Max 3-SAT

11

Contention Resolution in a Distributed System

Contention resolution. Given n processes P1, …, Pn, each competing for

access to a shared database. If two or more processes access the

database simultaneously, all processes are locked out. Devise protocol

to ensure all processes get through on a regular basis.

Restriction. Processes can't communicate.

Challenge. Need symmetry-breaking paradigm.

P1

P2

Pn

.

.

.

12

Contention Resolution: Randomized Protocol

Protocol. Each process requests access to the database at time t with

probability p = 1/n independently of the other processes.

Claim. Let S[i, t] = event that process i succeeds in accessing the

database at time t. Then 1/(e n) Pr[S(i, t)] 1/(2n).

Pf. By independence, Pr[S(i, t)] = p (1-p)n-1.

 Setting p = 1/n, we have Pr[S(i, t)] = 1/n (1 - 1/n) n-1. ▪

Useful facts from calculus. As n increases from 2, the function:

 (1 - 1/n)n-1 converges monotonically from 1/4 up to 1/e

 (1 - 1/n)n-1 converges monotonically from 1/2 down to 1/e.

process i requests access none of remaining n-1 processes request access

value that maximizes Pr[S(i, t)] between 1/e and 1/2

13

Contention Resolution: Randomized Protocol

Claim. The probability that process i fails to access the database in

en rounds is at most 1/e. After en(c ln n) rounds, the probability is at

most n-c.

Pf. Let F[i, t] = event that process i fails to access database in rounds

1 through t. By independence and previous claim, we have

Pr[F(i, t)] (1 - 1/(en)) t.

 Choose t = e n:

 Choose t = e n c ln n:

e

en

en

en

en
tiF 111 1 1)],(Pr[

Pr[F(i, t)] 1
e

c ln n
 nc

14

Contention Resolution: Randomized Protocol

Claim. The probability that all processes succeed within 2e n ln n

rounds is at least 1 - 1/n.

Pf. Let F[t] = event that at least one of the n processes fails to access

database in any of the rounds 1 through t.

 Choosing t = en 2 ln n yields Pr[F[t]] n · n-2 = 1/n. ▪

Union bound. Given events E1, …, En,

 n

i

i

n

i

i EE
11

]Pr[Pr

 t
en

n

i

n

i

ntiFtiFtF 1

11

1]],[Pr[],[Pr][Pr

union bound previous slide

