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Kapitel 5: 

Local Search

Inhalt:

• Gradient Descent (Hill Climbing)

• Metropolis Algorithm and Simulated Annealing

• Local Search in Hopfield Neural Networks

• Local Search for Max-Cut

– Single-flip neighborhood

– K-flip neighborhood

– KL-neighborhood

• Nash Equilibria
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Finding a Nash Equilibrium

Theorem. The following algorithm terminates with a Nash equilibrium.

Pf. Consider a set of paths P1, …, Pk.

 Let xe denote the number of paths that use edge e.

 Let (P1, …, Pk) =  eE ce· H(xe) be a potential function.

 Since there are only finitely many sets of paths, it suffices to show 

that  strictly decreases in each step. 

Best-Response-Dynamics(G, c) {

Pick a path for each agent

while (not a Nash equilibrium) {

Pick an agent i who can improve by switching paths

Switch path of agent i

}

}

H(0) = 0, 
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Finding a Nash Equilibrium

Pf. (continued)

 Consider agent j switching from path Pj to path Pj'.

 Agent j switches because

  increases by 

  decreases by 

 Thus, net change in  is negative.  ▪
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Bounding the Price of Stability

Claim.  Let C(P1, …, Pk) denote the total cost of selecting paths P1, …, Pk.

For any set of paths P1, …, Pk , we have

Pf.  Let xe denote the number of paths containing edge e.

 Let E+ denote set of edges that belong to at least one of the paths 

P1, … , Pk.

  



C(P1, , Pk )     ce
eE

    ce H(xe )
eE



(P1, , Pk )

    ce H(k)    H(k)
eE

 C(P1, , Pk )

  



C(P1, , Pk )     (P1, , Pk )    H(k) C(P1, , Pk )



5

Bounding the Price of Stability

Theorem.  There is a Nash equilibrium for which the total cost to all 

agents exceeds that of the social optimum by at most a factor of H(k). 

Pf.

 Let (P1
*, …, Pk

*) denote set of socially optimal paths.

 Run best-response dynamics algorithm starting from P*.

 Since  is monotone decreasing  (P1, …, Pk)   (P1
*, …, Pk

*). 

  



C(P1, , Pk )     (P1, , Pk )    (P1*, , Pk *)   H(k) C(P1*, , Pk *)

previous claim

applied to P

previous claim

applied to P*
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Summary

Existence.  Nash equilibria always exist for k-agent multicast routing 

with fair sharing.

Price of stability.  Best Nash equilibrium is never more than a factor of 

H(k) worse than the social optimum.

Fundamental open problem.  

(1) Find any Nash equilibria in poly-time.

(2) Find efficiently the Nash equilibria that achieve the bound H(k).
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Fragen?
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Kapitel 6: 

Randomized Algorithms
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Randomization

Algorithmic design patterns.

 Greedy.

 Divide-and-conquer.

 Dynamic programming.

 Approximation.

 Local Search.

 Randomization.

Randomization.  Allow fair coin flip in unit time.

Why randomize? Can lead to simplest, fastest, or only known algorithm 

for a particular problem.

Ex.  Symmetry breaking protocols, graph algorithms, quicksort, hashing, 

load balancing, Monte Carlo integration, cryptography.

in practice, access to a pseudo-random number generator
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Kapitel 6: 

Randomized Algorithms

Inhalt:

• Contention Resolution (symmetry-breaking)

• Global Minimum Cut (contraction algorithm)

• Random Variables and their Expectations
– Guessing Cards

– Coupon Collector

• Max 3-SAT
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Contention Resolution in a Distributed System

Contention resolution.  Given n processes P1, …, Pn, each competing for 

access to a shared database. If two or more processes access the 

database simultaneously, all processes are locked out. Devise protocol 

to ensure all processes get through on a regular basis.

Restriction.  Processes can't communicate.

Challenge.  Need symmetry-breaking paradigm.

P1

P2

Pn

.

.

.
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Contention Resolution:  Randomized Protocol

Protocol.  Each process requests access to the database at time t with 

probability p = 1/n independently of the other processes.

Claim.  Let S[i, t] = event that process i succeeds in accessing the 

database at time t. Then 1/(e  n)  Pr[S(i, t)]  1/(2n).

Pf.  By independence,   Pr[S(i, t)]  =  p (1-p)n-1.

 Setting p = 1/n, we have Pr[S(i, t)]  =  1/n (1 - 1/n) n-1.  ▪

Useful facts from calculus.  As n increases from 2, the function:

 (1 - 1/n)n-1 converges monotonically from 1/4 up to 1/e

 (1 - 1/n)n-1 converges monotonically from 1/2 down to 1/e.

process i requests access none of remaining n-1 processes request access

value that maximizes Pr[S(i, t)] between 1/e and 1/2
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Contention Resolution:  Randomized Protocol

Claim.  The probability that process i fails to access the database in

en rounds is at most 1/e. After en(c ln n) rounds, the probability is at 

most n-c.

Pf.  Let F[i, t] = event that process i fails to access database in rounds 

1 through t. By independence and previous claim, we have

Pr[F(i, t)]   (1 - 1/(en)) t.

 Choose t = e  n:

 Choose t = e  n c ln n:
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Contention Resolution:  Randomized Protocol

Claim.  The probability that all processes succeed within 2e  n ln n 

rounds is at least 1 - 1/n.

Pf.  Let F[t] = event that at least one of the n processes fails to access 

database in any of the rounds 1 through t.

 Choosing t = en 2 ln n yields  Pr[F[t]]  n · n-2 = 1/n.  ▪

Union bound.  Given events E1, …, En, 
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