Kapitel 5:
Local Search

Inhalt:

« Gradient Descent (Hill Climbing)

« Metropolis Algorithm and Simulated Annealing
« Local Search in Hopfield Neural Networks

« Local Search for Max-Cut
— Single-flip neighborhood
— K-flip neighborhood
— KL-neighborhood

* Nash Equilibria
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Finding a Nash Equilibrium
Theorem. The following algorithm terminates with a Nash equilibrium.

Best-Response-Dynamics (G, c) {
Pick a path for each agent

while (not a Nash equilibrium) ({

Pick an agent i who can improve by switching paths
Switch path of agent i

Pf. Consider a set of paths Py, ..., P,.
. Let x, denote the number of paths that use edge e.
. Let (P, .., P) = X, c. H(x,) be a potential function.
. Since there are only finitely many sets of paths, it suffices to show
that @ strictly decreases in each step.
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Finding a Nash Equilibrium

Pf. (continued)
. Consider agent j switching from path P; to path P;".
. Agent j switches because
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. Thus, net change in @ is negative. -



Bounding the Price of Stability

Claim. Let C(Py, ..., P,) denote the total cost of selecting paths Py, ..., P,.
For any set of paths Py, ..., P, , we have

C(R,...R) < @®(R,...,R) < H(k)-C(R,...,R)

Pf. Let x, denote the number of paths containing edge e.
. Let E* denote set of edges that belong to at least one of the paths
P, ..., P.
C(P,....R) = Yc < YCHKX) < XcHK = HK) CPR,..., R)
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Bounding the Price of Stability

Theorem. There is a Nash equilibrium for which the total cost to all
agents exceeds that of the social optimum by at most a factor of H(k).

Pf.
. Let (P,", .., P") denote set of socially optimal paths.
. Run best-response dynamics algorithm starting from P*.
. Since @ is monotone decreasing ®(P,, ..., P,) < ©(P;", .., P,).

C(R,..,R) < ®(PR,...R) < ®(R*...P* < H(K)-C(R*, ..., R*
I I

previous claim previous claim
applied to P applied to P*



Summary

Existence. Nash equilibria always exist for k-agent multicast routing
with fair sharing.

Price of stability. Best Nash equilibrium is never more than a factor of
H(k) worse than the social optimum.

Fundamental open problem.
(1) Find any Nash equilibria in poly-time.
(2) Find efficiently the Nash equilibria that achieve the bound H(k).
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Kapitel 6:
Randomized Algorithms
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Randomization

Algorithmic design patterns.
. Greedy.

. Divide-and-conquer.

. Dynamic programming.

. Approximation.

. Local Search.

. Randomization.
in practice, access to a pseudo-random number generator

-
Randomization. Allow fair coin flip in unit fime.

Why randomize? Can lead to simplest, fastest, or only known algorithm
for a particular problem.

Ex. Symmetry breaking protocols, graph algorithms, quicksort, hashing,
load balancing, Monte Carlo integration, cryptography.



Kapitel 6:
Randomized Algorithms

Inhalt:
» Contention Resolution (symmetry-breaking)

* Global Minimum Cut (contraction algorithm)

« Random Variables and their Expectations

— Guessing Cards
— Coupon Collector

e Max 3-SAT
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Contention Resolution in a Distributed System

Contention resolution. Given n processes P, ..., P,, each competing for
access to a shared database. If two or more processes access the
database simultaneously, all processes are locked out. Devise protocol
to ensure all processes get through on a regular basis.

Restriction. Processes can't communicate.

Challenge. Need symmetry-breaking paradigm.
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Contention Resolution: Randomized Protocol

Protocol. Each process requests access to the database at time t with
probability p = 1/n independently of the other processes.

Claim. Let S[i, t] = event that process i succeeds in accessing the
database at time t. Then 1/(e - n) < Pr[S(i, 1)] < 1/(2n).

Pf. By independence, Pr[S(i,t)] = p (1-p)*L.

process i requests access none of remaining n-1 processes request access

. Setting p = 1/n, we have Pr[S(i, t)] = 1/n(1-1/n)"1, =

value that maximizes Pr[S(i, t)] between 1/e and 1/2

Useful facts from calculus. As n increases from 2, the function:
. (1-1/n)" converges monotonically from 1/4 up to 1/e
. (1-1/n)*! converges monotonically from 1/2 down to 1/e.
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Contention Resolution: Randomized Protocol

Claim. The probability that process i fails o access the database in
en rounds is at most 1/e. After e-n(c In n) rounds, the probability is at
most n.
Pf. Let F[i, t] = event that process i fails o access database in rounds
1 through t. By independence and previous claim, we have
PrlF(i, )] < (1-1/(en))".

. Choose t=[e - n| PIF (D] <@-4)" <@-2)" <t

. Choose t=[e-nllcinnl:  PrE(i,1)] < (%)Cmn =n°
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Contention Resolution: Randomized Protocol

Claim. The probability that all processes succeed within 2e -nInn
rounds is at least 1 - 1/n.

Pf. Let F[t] = event that at least one of the n processes fails to access
database in any of the rounds 1 through t.

Pr{F[t]] = P{LHJ Fli I]} < Z PrIFfit]<n(1-1Y
1=1 I i=1 I

union bound previous slide

. Choosing t =[enl[2 Innlyields Pr[F[t]]<n-n2=1/n. =

Union bound. Given events E;, ..., E,, P{LHJ Ei}s _n Pr{E;]

i=1
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