Kapitel 6: Randomized Algorithms

Inhalt:

- Contention Resolution (symmetry-breaking)
- Global Minimum Cut (contraction algorithm)
- Random Variables and their Expectations
- Guessing Cards
- Coupon Collector
- Max 3-SAT

Global Minimum Cut

Global min cut. Given a connected, undirected graph $G=(V, E)$ find a cut (A, B) of minimum cardinality.

Applications. Partitioning items in a database, identify clusters of related documents, network reliability, network design, circuit design, TSP solvers.

Contraction Algorithm

Contraction algorithm. [Karger 1995]

- Pick an edge $e=(u, v)$ uniformly at random.
- Contract edge e.
- replace u and v by single new super-node w
- preserve edges, updating endpoints of u and v to w
- keep parallel edges, but delete self-loops
- Repeat until graph has just two nodes v_{1} and v_{2}.
- Return the cut (all nodes that were contracted to form $v_{1}=A, v_{2}=B$).

Contraction Algorithm

Claim. The contraction algorithm returns a min cut with prob $\geq 2 / n^{2}$.
Pf. Consider a global min-cut (A^{*}, B^{*}) of G. Let F^{*} be edges with one endpoint in A^{*} and the other in B^{\star}. Let $k=\left|F^{\star}\right|=$ size of min cut.

- In first step, algorithm contracts an edge in F^{*} probability $k /|E|$.
- Every node has degree $\geq k$ since otherwise (A^{*}, B^{\star}) would not be min-cut. $\Rightarrow|E| \geq \frac{1}{2} k n$.
- Thus, algorithm contracts an edge in F^{*} with probability $\leq 2 / n$.

Contraction Algorithm

Claim. The contraction algorithm returns a min cut with prob $\geq 2 / n^{2}$.
Pf. Consider a global min-cut (A^{*}, B^{\star}) of G. Let F^{*} be edges with one endpoint in A^{*} and the other in B^{*}. Let $k=\left|F^{\star}\right|=$ size of min cut.

- Let G^{\prime} be the graph after j iterations. There are $n^{\prime}=n-j$ supernodes.
- Suppose no edge in F^{\star} has been contracted. The min-cut in G^{\prime} is still k.
- Since value of min-cut is $k,\left|E^{\prime}\right| \geq \frac{1}{2} k n '$.
- Thus, algorithm contracts an edge in F^{\star} with probability $\leq 2 / n^{\prime}$.
- Let $\mathrm{E}_{\mathrm{j}}=$ event that an edge in F^{*} is not contracted in iteration j .

$$
\begin{aligned}
\operatorname{Pr}\left[E_{1} \cap E_{2} \cdots \cap E_{n-2}\right] & =\operatorname{Pr}\left[E_{1}\right] \times \operatorname{Pr}\left[E_{2} \mid E_{1}\right] \times \cdots \times \operatorname{Pr}\left[E_{n-2} \mid E_{1} \cap E_{2} \cdots \cap E_{n-3}\right] \\
& \geq\left(1-\frac{2}{n}\right)\left(1-\frac{2}{n-1}\right) \cdots\left(1-\frac{2}{4}\right)\left(1-\frac{2}{3}\right) \\
& =\left(\frac{n-2}{n}\right)\left(\frac{n-3}{n-1}\right) \cdots\left(\frac{2}{4}\right)\left(\frac{1}{3}\right) \\
& =\frac{2}{n(n-1)} \\
& \geq \frac{2}{n^{2}}
\end{aligned}
$$

Contraction Algorithm

Amplification. To amplify the probability of success, run the contraction algorithm many times.

Claim. If we repeat the contraction algorithm $n^{2} \ln n$ times with independent random choices, the probability of failing to find the global min-cut is at most $1 / \mathrm{n}^{2}$.

Pf. By independence, the probability of failure is at most

$$
\begin{gathered}
\left(1-\frac{2}{n^{2}}\right)^{n^{2} \ln n}=\left[\left(1-\frac{2}{n^{2}}\right)^{\frac{1}{2} n^{2}}\right]_{\uparrow}^{\leq \ln n} \quad\left(e^{-1}\right)^{2 \ln n}=\frac{1}{n^{2}} \\
(1-1 / x)^{x} \leq 1 / e
\end{gathered}
$$

Global Min Cut: Context

Remark. Overall running time is slow since we perform $\Theta\left(n^{2} \log n\right)$ iterations and each takes $\Omega(m)$ time.

Improvement. [Karger-Stein 1996] $O\left(n^{2} \log ^{3} n\right)$.

- Early iterations are less risky than later ones: probability of contracting an edge in min cut hits 50% when $n / \sqrt{2}$ nodes remain.
- Run contraction algorithm until $n / \sqrt{ }$ nodes remain.
- Run contraction algorithm twice on resulting graph, and return best of two cuts.

Extensions. Naturally generalizes to handle positive weights.

Best known. [Karger 2000] $O\left(m \log ^{3} n\right)$.
faster than best known max flow algorithm or
deterministic global min cut algorithm deterministic global min cut algorithm

Kapitel 6: Randomized Algorithms

Inhalt:

- Contention Resolution (symmetry-breaking)
- Global Minimum Cut (contraction algorithm)
- Random Variables and their Expectations
- Guessing Cards
- Coupon Collector
- Max 3-SAT

Expectation

Expectation. Given a discrete random variables X , its expectation $\mathrm{E}[\mathrm{X}]$ is defined by:

$$
E[X]=\sum_{j=0}^{\infty} j \operatorname{Pr}[X=j]
$$

Waiting for a first success. Coin is heads with probability p and tails with probability 1-p. How many independent flips X until first heads?

Expectation: Two Properties

Useful property. If X is a $0 / 1$ random variable, $E[X]=\operatorname{Pr}[X=1]$.
Pf.

$$
E[X]=\sum_{j=0}^{\infty} j \cdot \operatorname{Pr}[X=j]=\sum_{j=0}^{1} j \cdot \operatorname{Pr}[X=j]=\operatorname{Pr}[X=1]
$$

Linearity of expectation. Given two random variables X and Y defined over the same probability space, $E[X+Y]=E[X]+E[Y]$.

Decouples a complex calculation into simpler pieces.

Guessing Cards

Game. Shuffle a deck of n cards; turn them over one at a time; try to guess each card.

Memoryless guessing. No psychic abilities; can't even remember what's been turned over already. Guess a card from full deck uniformly at random.

Claim. The expected number of correct guesses is 1.
Pf. (surprisingly effortless using linearity of expectation)

- Let $X_{i}=1$ if $i^{\text {th }}$ prediction is correct and 0 otherwise.
- Let $X=$ number of correct guesses $=X_{1}+\ldots+X_{n}$.
- $E\left[X_{i}\right]=\operatorname{Pr}\left[X_{i}=1\right]=1 / n$.
. $E[X]=E\left[X_{1}\right]+\ldots+E\left[X_{n}\right]=1 / n+\ldots+1 / n=1$. .
1
linearity of expectation

Guessing Cards

Game. Shuffle a deck of n cards; turn them over one at a time; try to guess each card.

Guessing with memory. Guess a card uniformly at random from cards not yet seen.

Claim. The expected number of correct guesses is $\Theta(\log n)$. Pf.

- Let $X_{i}=1$ if $i^{\text {th }}$ prediction is correct and 0 otherwise.
- Let $X=$ number of correct guesses $=X_{1}+\ldots+X_{n}$.
- $E\left[X_{i}\right]=\operatorname{Pr}\left[X_{i}=1\right]=1 /(n-i+1)$.
- $E[X]=E\left[X_{1}\right]+\ldots+E\left[X_{n}\right]=1 / n+\ldots+1 / 2+1 / 1=\underset{\uparrow}{H(n) .}$.
linearity of expectation
$\ln (n+1)<H(n)<1+\ln n$

Coupon Collector

Coupon collector. Each box of "Hanuta" contains a coupon. There are n different types of coupons. Assuming all boxes are equally likely to contain each coupon, how many boxes before you have ≥ 1 coupon of each type?

Claim. The expected number of steps is $\Theta(n \log n)$.
Pf.

- Phase $\mathrm{j}=$ time between j and $\mathrm{j}+1$ distinct coupons.
- Let $X_{j}=$ number of steps you spend in phase j.
- Let $X=$ number of steps in total $=X_{0}+X_{1}+\ldots+X_{n-1}$.

$$
\begin{aligned}
E[X]= & \sum_{j=0}^{n-1} E\left[X_{j}\right]=\sum_{j=0}^{n-1} \frac{n}{n-j}=n \sum_{i=1}^{n} \frac{1}{i}=n H(n) \\
& \quad \begin{array}{l}
\text { prob of success }=(n-j) / n \\
\\
\end{array} \quad \text { expected waiting time }=n /(n-j)
\end{aligned}
$$

Kapitel 6: Randomized Algorithms

Inhalt:

- Contention Resolution (symmetry-breaking)
- Global Minimum Cut (contraction algorithm)
- Random Variables and their Expectations
- Guessing Cards
- Coupon Collector
- Max 3-SAT

Maximum 3-Satisfiability

MAX-3SAT. Given 3-SAT formula, find a truth assignment that satisfies as many clauses as possible.

$$
\begin{aligned}
& C_{1}=x_{2} \vee \overline{x_{3}} \vee \overline{x_{4}} \\
& C_{2}=x_{2} \vee x_{3} \vee \overline{x_{4}} \\
& C_{3}=\overline{x_{1}} \vee x_{2} \vee x_{4} \\
& C_{4}=\overline{x_{1}} \vee \overline{x_{2}} \vee x_{3} \\
& C_{5}=x_{1} \vee \overline{x_{2}} \vee \overline{x_{4}}
\end{aligned}
$$

Remark. NP-hard search problem.

Simple idea. Flip a coin, and set each variable true with probability $\frac{1}{2}$, independently for each variable.

Maximum 3-Satisfiability: Analysis

Claim. Given a 3-SAT formula with k clauses, the expected number of clauses satisfied by a random assignment is $7 \mathrm{k} / 8$.
Pf. Consider random variable $Z_{j}= \begin{cases}1 & \text { if clause } C_{j} \text { is satisfied } \\ 0 & \text { otherwise } .\end{cases}$

- Let $Z=$ number of clauses satisfied by assignment $Z_{j}, j=1, \ldots, k$. $=Z_{1}+Z_{2}+\ldots+Z_{k}=$ number of satisfied clauses

$$
\begin{aligned}
E[Z] & =\sum_{j=1}^{k} E\left[Z_{j}\right] \\
\text { linearity of expectation } & =\sum_{j=1}^{k} \operatorname{Pr}\left[\text { clause } C_{j} \text { is satisfied }\right] \\
& =\frac{7}{8} k
\end{aligned}
$$

The Probabilistic Method

Corollary. For any instance of 3-SAT, there exists a truth assignment that satisfies at least a $7 / 8$ fraction of all clauses.

Pf. Random variable is at least its expectation some of the time.

Probabilistic method. We showed the existence of a non-obvious property of 3-SAT by showing that a random construction produces it with positive probability!

Maximum 3-Satisfiability: Analysis

Q. Can we turn this idea into a $7 / 8$-approximation algorithm? In general, a random variable can almost always be below its mean.

Lemma. The probability that a random assignment satisfies $\geq 7 k / 8$ clauses is at least $1 /(8 \mathrm{k})$.

Pf. Let p_{j} be the probability that exactly j clauses are satisfied; let p be probability that $\geq 7 k / 8$ clauses are satisfied.

$$
\begin{aligned}
\frac{7}{8} k=E[Z] & =\sum_{j \geq 0} j p_{j} \\
& =\sum_{j<7 k / 8} j p_{j}+\sum_{j \geq 7 k / 8} j p_{j} \\
& \leq\left(\frac{7 k}{8}-\frac{1}{8}\right) \sum_{j<7 k / 8} p_{j}+k \sum_{j \geq 7 k / 8} p_{j} \\
& \leq\left(\frac{7}{8} k-\frac{1}{8}\right) \cdot 1+k p
\end{aligned}
$$

Rearranging terms yields $p \geq 1$ /(8k).

Maximum 3-Satisfiability: Analysis

Johnson's algorithm. Repeatedly generate random truth assignments until one of them satisfies $\geq 7 \mathrm{k} / 8$ clauses.

Theorem. Johnson's algorithm is a 7/8-approximation algorithm.
Pf. By previous lemma, each iteration succeeds with probability at least $1 /(8 \mathrm{k})$. By the waiting-time bound, the expected number of trials to find the satisfying assignment is at most 8 k . -

Maximum Satisfiability

Extensions.

- Allow one, two, or more literals per clause.
- Find max weighted set of satisfied clauses.

Theorem. [Asano-Williamson 2000] There exists a 0.784approximation algorithm for MAX-SAT.

Theorem. [Karloff-Zwick 1997, Zwick+computer 2002] There exists a 7/8-approximation algorithm for version of MAX-3SAT where each clause has at most 3 literals.

Theorem. [Håstad 1997] Unless P = NP, no ρ-approximation algorithm for MAX-3SAT (and hence MAX-SAT) for any $\rho>7 / 8$.
very unlikely to improve over simple randomized algorithm for MAX-3SAT

Monte Carlo vs. Las Vegas Algorithms

Monte Carlo algorithm. Guaranteed to run in poly-time, likely to find correct answer.
Ex: Contraction algorithm for global min cut.

Las Vegas algorithm. Guaranteed to find correct answer, likely to run in poly-time.
Ex: Randomized quicksort, Johnson's MAX-3SAT algorithm.
stop algorithm after a certain point \downarrow
Remark. Can always convert a Las Vegas algorithm into Monte Carlo, but no known method to convert the other way.

RP and ZPP

RP. [Monte Carlo] Decision problems solvable with one-sided error in poly-time.

One-sided error.

Can decrease probability of false negative to 2^{-100} by 100 independent repetitions

- If the correct answer is no, always return no.
- If the correct answer is yes, return yes with probability $\geq \frac{1}{2}$.

ZPP. [Las Vegas] Decision problems solvable in expected poly-time.
running time can be unbounded, but on average it is fast

Theorem. $P \subseteq Z P P \subseteq R P \subseteq N P$.

Fundamental open questions. To what extent does randomization help? Does $P=Z P P$? Does $Z P P=R P$? Does RP = NP?

Fragen?

