Kapitel 6: Randomized Algorithms

Inhalt:

- Contention Resolution (symmetry-breaking)
- Global Minimum Cut (contraction algorithm)
- Random Variables and their Expectations
 - Guessing Cards
 - Coupon Collector
- Max 3-SAT

Global Minimum Cut

Global min cut. Given a connected, undirected graph G = (V, E) find a cut (A, B) of minimum cardinality.

Applications. Partitioning items in a database, identify clusters of related documents, network reliability, network design, circuit design, TSP solvers.

Contraction algorithm. [Karger 1995]

- Pick an edge e = (u, v) uniformly at random.
- Contract edge e.
 - replace u and v by single new super-node w
 - preserve edges, updating endpoints of u and v to w
 - keep parallel edges, but delete self-loops
- . Repeat until graph has just two nodes v_1 and v_2 .
- Return the cut (all nodes that were contracted to form $v_1=A$, $v_2=B$).

Claim. The contraction algorithm returns a min cut with prob $\geq 2/n^2$.

Pf. Consider a global min-cut (A^* , B^*) of G. Let F* be edges with one endpoint in A^* and the other in B^* . Let $k = |F^*| = size$ of min cut.

- In first step, algorithm contracts an edge in F^* probability k / |E|.
- Every node has degree $\ge k$ since otherwise (A*, B*) would not be min-cut. $\Rightarrow |E| \ge \frac{1}{2}kn$.
- Thus, algorithm contracts an edge in F* with probability $\leq 2/n$.

Claim. The contraction algorithm returns a min cut with prob $\geq 2/n^2$.

Pf. Consider a global min-cut (A^* , B^*) of G. Let F* be edges with one endpoint in A^* and the other in B^* . Let $k = |F^*| = size$ of min cut.

- Let G' be the graph after j iterations. There are n' = n-j supernodes.
- Suppose no edge in F^* has been contracted. The min-cut in G' is still k.
- Since value of min-cut is k, $|E'| \ge \frac{1}{2}kn'$.
- Thus, algorithm contracts an edge in F* with probability $\leq 2/n'$.
- Let E_j = event that an edge in F* is not contracted in iteration j.

 $Pr[E_1 \cap E_2 \dots \cap E_{n-2}] = Pr[E_1] \times Pr[E_2 | E_1] \times \dots \times Pr[E_{n-2} | E_1 \cap E_2 \dots \cap E_{n-3}]$ $\geq (1 - \frac{2}{n})(1 - \frac{2}{n-1}) \dots (1 - \frac{2}{4})(1 - \frac{2}{3})$ $= (\frac{n-2}{n})(\frac{n-3}{n-1}) \dots (\frac{2}{4}) (\frac{1}{3})$ $= \frac{2}{n(n-1)}$ $\geq \frac{2}{n^2}$

Amplification. To amplify the probability of success, run the contraction algorithm many times.

Claim. If we repeat the contraction algorithm n^2 ln n times with independent random choices, the probability of failing to find the global min-cut is at most $1/n^2$.

Pf. By independence, the probability of failure is at most

$$\left(1 - \frac{2}{n^2}\right)^{n^2 \ln n} = \left[\left(1 - \frac{2}{n^2}\right)^{\frac{1}{2}n^2}\right]^{2\ln n} \le \left(e^{-1}\right)^{2\ln n} = \frac{1}{n^2}$$

$$\uparrow \qquad (1 - 1/x)^x \le 1/e$$

Global Min Cut: Context

Remark. Overall running time is slow since we perform $\Theta(n^2 \log n)$ iterations and each takes $\Omega(m)$ time.

Improvement. [Karger-Stein 1996] O(n² log³n).

- Early iterations are less risky than later ones: probability of contracting an edge in min cut hits 50% when n / J2 nodes remain.
- Run contraction algorithm until n / $\int 2$ nodes remain.
- Run contraction algorithm twice on resulting graph, and return best of two cuts.

Extensions. Naturally generalizes to handle positive weights.

Best known. [Karger 2000] O(m log³n).

faster than best known max flow algorithm or deterministic global min cut algorithm

Kapitel 6: Randomized Algorithms

Inhalt:

- Contention Resolution (symmetry-breaking)
- Global Minimum Cut (contraction algorithm)
- Random Variables and their Expectations
 - Guessing Cards
 - Coupon Collector
- Max 3-SAT

Expectation

Expectation. Given a discrete random variables X, its expectation E[X] is defined by:

$$E[X] = \sum_{j=0}^{\infty} j \Pr[X = j]$$

Waiting for a first success. Coin is heads with probability p and tails with probability 1-p. How many independent flips X until first heads?

$$E[X] = \sum_{j=0}^{\infty} j \cdot \Pr[X=j] = \sum_{j=0}^{\infty} j (1-p)^{j-1} p = \frac{p}{1-p} \sum_{j=0}^{\infty} j (1-p)^{j} = \frac{p}{1-p} \cdot \frac{1-p}{p^{2}} = \frac{1}{p}$$

j-1 tails 1 head

Expectation: Two Properties

Useful property. If X is a 0/1 random variable, E[X] = Pr[X = 1].

Pf.
$$E[X] = \sum_{j=0}^{\infty} j \cdot \Pr[X=j] = \sum_{j=0}^{1} j \cdot \Pr[X=j] = \Pr[X=1]$$

not necessarily independent

Linearity of expectation. Given two random variables X and Y defined over the same probability space, E[X + Y] = E[X] + E[Y].

Decouples a complex calculation into simpler pieces.

Guessing Cards

Game. Shuffle a deck of n cards; turn them over one at a time; try to guess each card.

Memoryless guessing. No psychic abilities; can't even remember what's been turned over already. Guess a card from full deck uniformly at random.

Claim. The expected number of correct guesses is 1. Pf. (surprisingly effortless using linearity of expectation)

- Let $X_i = 1$ if ith prediction is correct and 0 otherwise.
- Let X = number of correct guesses = $X_1 + ... + X_n$.
- $E[X_i] = Pr[X_i = 1] = 1/n.$
- $E[X] = E[X_1] + ... + E[X_n] = 1/n + ... + 1/n = 1.$

linearity of expectation

Guessing Cards

Game. Shuffle a deck of n cards; turn them over one at a time; try to guess each card.

Guessing with memory. Guess a card uniformly at random from cards not yet seen.

Claim. The expected number of correct guesses is $\Theta(\log n)$. Pf.

- Let $X_i = 1$ if i^{th} prediction is correct and 0 otherwise.
- Let X = number of correct guesses = $X_1 + ... + X_n$.
- $E[X_i] = Pr[X_i = 1] = 1 / (n i + 1).$
- $E[X] = E[X_1] + ... + E[X_n] = 1/n + ... + 1/2 + 1/1 = H(n).$ integrity of expectation $\int_{|n(n+1) < H(n) < 1 + \ln n}^{n}$

Coupon Collector

Coupon collector. Each box of "Hanuta" contains a coupon. There are n different types of coupons. Assuming all boxes are equally likely to contain each coupon, how many boxes before you have ≥ 1 coupon of each type?

Claim. The expected number of steps is $\Theta(n \log n)$. Pf.

- Phase j = time between j and j+1 distinct coupons.
- Let X_j = number of steps you spend in phase j.
- Let X = number of steps in total = $X_0 + X_1 + ... + X_{n-1}$.

$$E[X] = \sum_{j=0}^{n-1} E[X_j] = \sum_{j=0}^{n-1} \frac{n}{n-j} = n \sum_{i=1}^{n-1} \frac{1}{i} = n H(n)$$

prob of success =
$$(n-j)/n$$

 \Rightarrow expected waiting time = $n/(n-j)$

Kapitel 6: Randomized Algorithms

Inhalt:

- Contention Resolution (symmetry-breaking)
- Global Minimum Cut (contraction algorithm)
- Random Variables and their Expectations
 - Guessing Cards
 - Coupon Collector
- Max 3-SAT

Maximum 3-Satisfiability

_____ exactly 3 distinct literals per clause

MAX-3SAT. Given 3-SAT formula, find a truth assignment that satisfies as many clauses as possible.

$$C_1 = x_2 \lor \overline{x_3} \lor \overline{x_4}$$

$$C_2 = x_2 \lor x_3 \lor \overline{x_4}$$

$$C_3 = \overline{x_1} \lor x_2 \lor x_4$$

$$C_4 = \overline{x_1} \lor \overline{x_2} \lor x_3$$

$$C_5 = x_1 \lor \overline{x_2} \lor \overline{x_4}$$

Remark. NP-hard search problem.

Simple idea. Flip a coin, and set each variable true with probability $\frac{1}{2}$, independently for each variable.

Maximum 3-Satisfiability: Analysis

Claim. Given a 3-SAT formula with k clauses, the expected number of clauses satisfied by a random assignment is 7k/8.

Pf. Consider random variable
$$Z_j = \begin{cases} 1 & \text{if clause } C_j \text{ is satisfied} \\ 0 & \text{otherwise.} \end{cases}$$

• Let Z = number of clauses satisfied by assignment Z_j , j=1, ..., k. = $Z_1 + Z_2 + ... + Z_k$ = number of satisfied clauses

$$E[Z] = \sum_{\substack{j=1 \\ j=1}}^{k} E[Z_j]$$

linearity of expectation = $\sum_{\substack{j=1 \\ j=1}}^{k} Pr[clause C_j is satisfied]$
= $\frac{7}{8}k$

The Probabilistic Method

Corollary. For any instance of 3-SAT, there exists a truth assignment that satisfies at least a 7/8 fraction of all clauses.

Pf. Random variable is at least its expectation some of the time. •

Probabilistic method. We showed the existence of a non-obvious property of 3-SAT by showing that a random construction produces it with positive probability!

Maximum 3-Satisfiability: Analysis

Q. Can we turn this idea into a 7/8-approximation algorithm? In general, a random variable can almost always be below its mean.

Lemma. The probability that a random assignment satisfies $\geq 7k/8$ clauses is at least 1/(8k).

Pf. Let p_j be the probability that exactly j clauses are satisfied; let p be probability that $\geq 7k/8$ clauses are satisfied.

$$\begin{array}{rcl} \frac{7}{8}k &= E[Z] &= & \sum_{j \ge 0} j \, p_j \\ &= & \sum_{j < 7k/8} j \, p_j \, + \, \sum_{j \ge 7k/8} j \, p_j \\ &\leq & \left(\frac{7k}{8} - \frac{1}{8}\right) \sum_{j < 7k/8} p_j \, + \, k \sum_{j \ge 7k/8} p_j \\ &\leq & \left(\frac{7}{8}k - \frac{1}{8}\right) \, \cdot \, 1 \, + \, k \, p \end{array}$$

Rearranging terms yields $p \ge 1 / (8k)$.

Maximum 3-Satisfiability: Analysis

Johnson's algorithm. Repeatedly generate random truth assignments until one of them satisfies $\geq 7k/8$ clauses.

Theorem. Johnson's algorithm is a 7/8-approximation algorithm.

Pf. By previous lemma, each iteration succeeds with probability at least 1/(8k). By the waiting-time bound, the expected number of trials to find the satisfying assignment is at most 8k.

Maximum Satisfiability

Extensions.

- Allow one, two, or more literals per clause.
- Find max weighted set of satisfied clauses.

Theorem. [Asano-Williamson 2000] There exists a 0.784approximation algorithm for MAX-SAT.

Theorem. [Karloff-Zwick 1997, Zwick+computer 2002] There exists a 7/8-approximation algorithm for version of MAX-3SAT where each clause has at most 3 literals.

Theorem. [Håstad 1997] Unless P = NP, no ρ -approximation algorithm for MAX-3SAT (and hence MAX-SAT) for any $\rho > 7/8$.

very unlikely to improve over simple randomized algorithm for MAX-3SAT

Monte Carlo vs. Las Vegas Algorithms

Monte Carlo algorithm. Guaranteed to run in poly-time, likely to find correct answer.

Ex: Contraction algorithm for global min cut.

Las Vegas algorithm. Guaranteed to find correct answer, likely to run in poly-time.

Ex: Randomized quicksort, Johnson's MAX-3SAT algorithm.

stop algorithm after a certain point Remark. Can always convert a Las Vegas algorithm into Monte Carlo, but no known method to convert the other way.

RP and ZPP

RP. [Monte Carlo] Decision problems solvable with one-sided error in poly-time.

One-sided error.

Can decrease probability of false negative to 2⁻¹⁰⁰ by 100 independent repetitions

- If the correct answer is no, always return no.
- If the correct answer is yes, return yes with probability $\geq \frac{1}{2}$.

ZPP. [Las Vegas] Decision problems solvable in expected poly-time.

running time can be unbounded, but on average it is fast

Theorem. $P \subseteq ZPP \subseteq RP \subseteq NP$.

Fundamental open questions. To what extent does randomization help? Does P = ZPP? Does ZPP = RP? Does RP = NP?

Fragen?

