Kapitel 3: Dynamic Programming

Inhalt:

- Weighted Interval Scheduling
- Segmented Least Squares
- Knapsack Problem
- Sequence Alignment

Knapsack Problem

Knapsack problem.

- Given n objects and a "knapsack."
- Item i weights $w_i > 0$ kilograms and has value $v_i > 0$.
- Knapsack has capacity of W kilograms.
- Goal: fill knapsack so as to maximize total value.

Ex: { 3, 4 } has value 40.	Item	Value	Weight
	1	1	1
W =	11 2	6	2
	3	18	5
	4	22	6
	5	28	7

Greedy: repeatedly add item with maximum ratio v_i / w_i . Ex: { 5, 2, 1 } achieves only value = 35 \Rightarrow greedy not optimal.

Dynamic Programming: False Start

Def. OPT(i) = max profit subset of items 1, ..., i.

- . Case 1: OPT does not select item i.
 - OPT selects best of { 1, 2, ..., i-1 }
- Case 2: OPT selects item i.
 - accepting item i does not immediately imply that we will have to reject other items
 - without knowing what other items were selected before i, we don't even know if we have enough room for i

Conclusion. Need more sub-problems!

Dynamic Programming: Adding a New Variable

Def. OPT(i, w) = max profit subset of items 1, ..., i with weight limit w.

- Case 1: OPT does not select item i.
 - OPT selects best of { 1, 2, ..., i-1 } using weight limit w
- Case 2: OPT selects item i.
 - new weight limit = w w_i
 - OPT selects best of { 1, 2, ..., i-1 } using this new weight limit

 $OPT(i, w) = \begin{cases} 0 & \text{if } i = 0\\ OPT(i-1, w) & \text{if } w_i > w\\ \max \{ OPT(i-1, w), v_i + OPT(i-1, w-w_i) \} & \text{otherwise} \end{cases}$

Knapsack Problem: Bottom-Up

Knapsack. Fill up an n-by-W array.

```
Input: n, W, w<sub>1</sub>, ..., w<sub>n</sub>, v<sub>1</sub>, ..., v<sub>n</sub>
for w = 0 to W
    M[0, w] = 0
for i = 1 to n
    for w = 1 to W
        if (w<sub>i</sub> > w)
            M[i, w] = M[i-1, w]
        else
            M[i, w] = max {M[i-1, w], v<sub>i</sub> + M[i-1, w-w<sub>i</sub>]}
return M[n, W]
```

Knapsack Algorithm

W + 1

W = 11

		0	1	2	3	4	5	6	7	8	9	10	11
n + 1	φ	0	0	0	0	0	0	0	0	0	0	0	0
	{1}	0	1	1	1	1	1	1	1	1	1	1	1
	{ 1, 2 }	0	1	6	7	7	7	7	7	7	7	7	7
	{ 1, 2, 3 }	0	1	6	7	7	18	19	24	25	25	25	25
	{ 1, 2, 3, 4 }	0	1	6	7	7	18	22	24	28	29	29	40
Ļ	{1,2,3,4,5}	0	1	6	7	7	18	22	28	29	34	35	40

Item	Value	Weight
1	1	1
2	6	2
3	18	5
4	22	6
5	28	7

OPT:	{ 4, 3 }
value	= 22 + 18 = 40

6

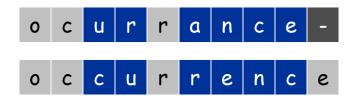
Knapsack Problem: Running Time

Running time. $\Theta(n W)$.

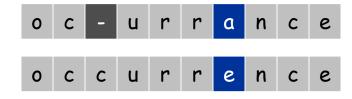
- Not polynomial in input size!
- "Pseudo-polynomial."
- Decision version of Knapsack is NP-complete.

Knapsack approximation algorithm. There exists a polynomial algorithm that produces a feasible solution that has value within 0.01% of optimum.

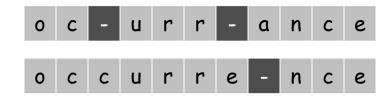
Kapitel 3: Dynamic Programming


Inhalt:

- Weighted Interval Scheduling
- Segmented Least Squares
- Knapsack Problem
- Sequence Alignment


String Similarity

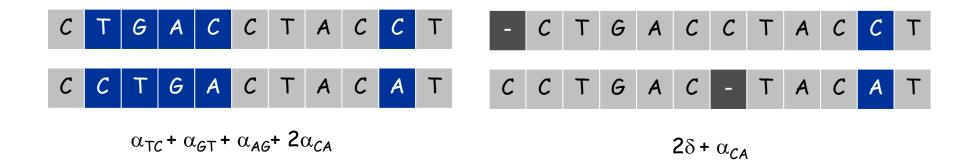
How similar are two strings?


- ocurrance
- occurrence

6 mismatches, 1 gap

1 mismatch, 1 gap

0 mismatches, 3 gaps

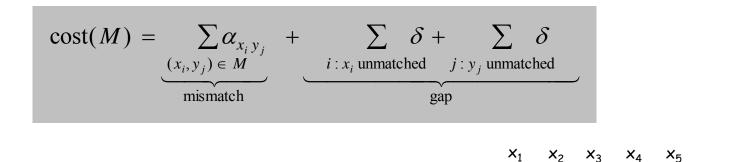

Edit Distance

Applications.

- Basis for Unix diff.
- Speech recognition.
- Computational biology.

Edit distance. [Levenshtein 1966, Needleman-Wunsch 1970]

- Gap penalty δ ; mismatch penalty $\alpha_{\text{pg}}.$
- Cost = sum of gap and mismatch penalties.



Sequence Alignment

Goal: Given two strings $X = x_1 x_2 \dots x_m$ and $Y = y_1 y_2 \dots y_n$ find alignment of minimum cost.

Def. An alignment M is a set of ordered pairs $x_i - y_j$ such that each item occurs in at most one pair and no crossings.

Def. The pair $x_i - y_j$ and $x_{i'} - y_{j'}$ cross if i < i', but j > j'.

Ex: CTACCG VS. TACATG. Sol: $M = x_2 - y_1, x_3 - y_2, x_4 - y_3, x_5 - y_4, x_6 - y_6$. - T A C A \mathbf{x}_{6}

G

Y6

Y₁ **Y**₂ **Y**₃ **Y**₄ **Y**₅

Sequence Alignment: Problem Structure

Def. OPT(i, j) = min cost of aligning strings $x_1 x_2 \dots x_i$ and $y_1 y_2 \dots y_j$.

- Case 1: OPT matches $x_i y_j$.
 - pay cost for x_i - y_j + min cost of aligning two strings

 $x_1 x_2 \dots x_{i-1}$ and $y_1 y_2 \dots y_{j-1}$

- Case 2a: OPT leaves x, unmatched.
 - pay gap for x_i and min cost of aligning $x_1 x_2 \dots x_{i-1}$ and $y_1 y_2 \dots y_i$
- Case 2b: OPT leaves y_j unmatched.

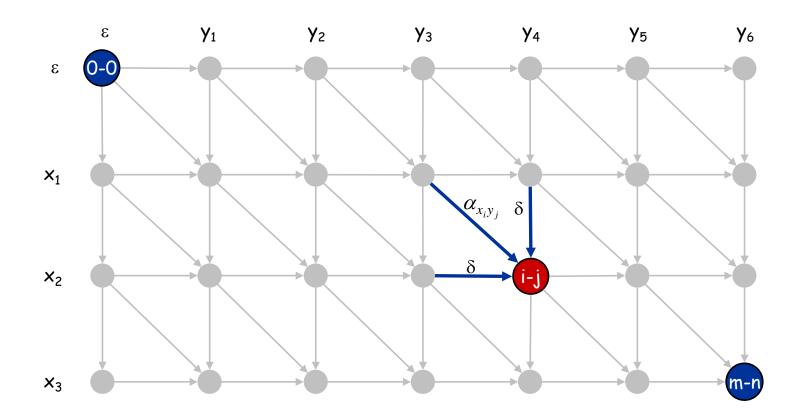
- pay gap for y_j and min cost of aligning $x_1 x_2 \dots x_i$ and $y_1 y_2 \dots y_{j-1}$

$$OPT(i, j) = \begin{cases} j\delta & \text{if } i = 0\\ \\ min \begin{cases} \alpha_{x_i y_j} + OPT(i-1, j-1) \\ \delta + OPT(i-1, j) \\ \delta + OPT(i, j-1) \\ \\ i\delta & \text{if } j = 0 \end{cases} \text{ otherwise}$$

Sequence Alignment: Algorithm

Analysis. $\Theta(mn)$ time and space. English words or sentences: m, n \leq 10. Computational biology: m = n = 100,000. 10 billions ops OK, but 10 GB array?

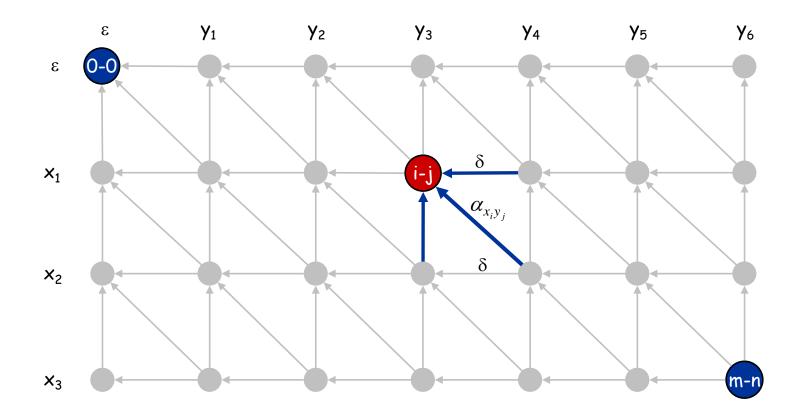
Q. Can we avoid using quadratic space?

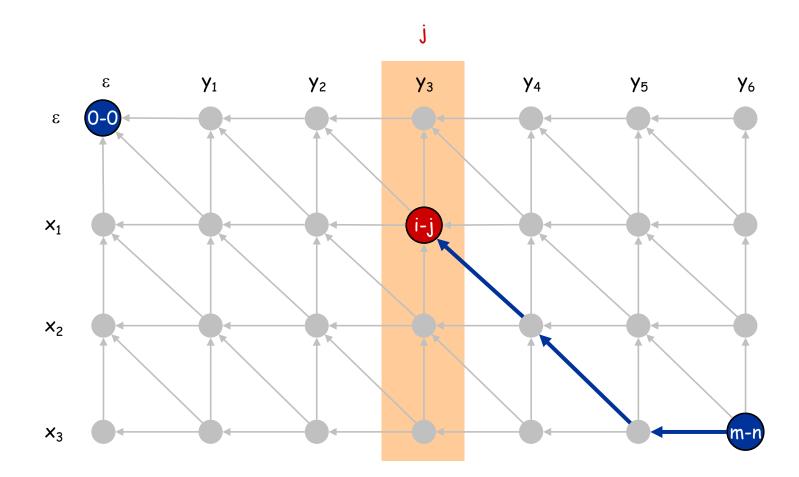

Easy. Optimal value in O(m + n) space and O(mn) time.

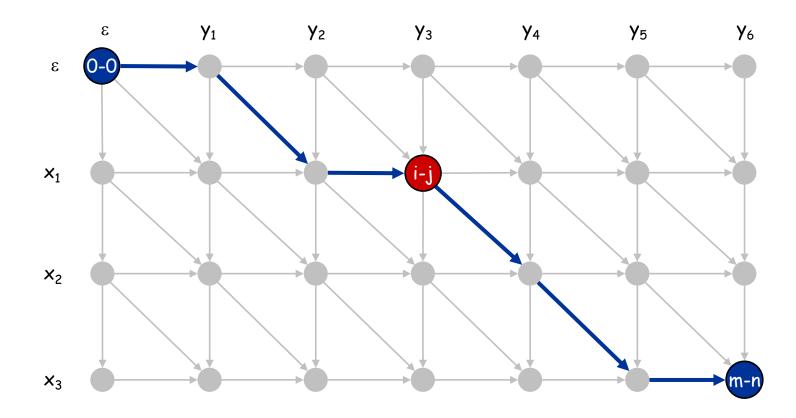
- Compute $OPT(i, \cdot)$ from $OPT(i-1, \cdot)$.
- No longer a simple way to recover alignment itself.

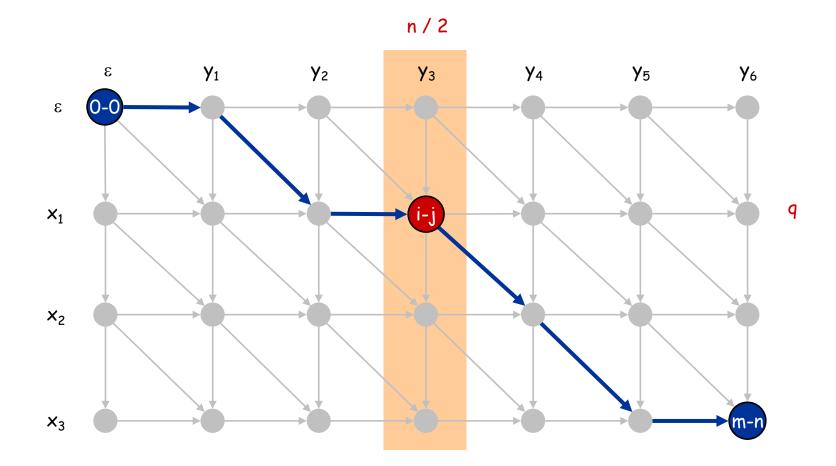
Theorem. [Hirschberg 1975] Optimal alignment in O(m + n) space and O(mn) time.

- Clever combination of divide-and-conquer and dynamic programming.
- Inspired by idea of Savitch from complexity theory.

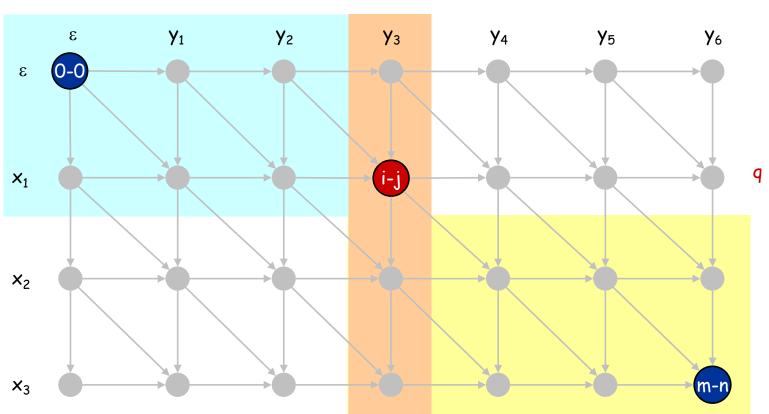

- Let f(i, j) be shortest path from (0,0) to (i, j).
- Observation: f(i, j) = OPT(i, j).


- Let f(i, j) be shortest path from (0,0) to (i, j).
- Can compute $f(\cdot, j)$ for any j in O(mn) time and O(m + n) space.


- Let g(i, j) be shortest path from (i, j) to (m, n).
- Can compute by reversing the edge orientations and inverting the roles of (0, 0) and (m, n)


- Let g(i, j) be shortest path from (i, j) to (m, n).
- Can compute $g(\cdot, j)$ for any j in O(mn) time and O(m + n) space.

Observation 1. The cost of the shortest path that uses (i, j) is f(i, j) + g(i, j).


Observation 2. let q be an index that minimizes f(q, n/2) + g(q, n/2). Then, the shortest path from (0, 0) to (m, n) uses (q, n/2).

Divide: find index q that minimizes f(q, n/2) + g(q, n/2) using DP.

• Align x_q and $y_{n/2}$.

Conquer: recursively compute optimal alignment in each piece.

n / 2

Sequence Alignment: Running Time Analysis Warmup

Theorem. Let T(m, n) = max running time of algorithm on strings of length at most m and n. $T(m, n) = O(mn \log n)$.

 $T(m,n) \leq 2T(m, n/2) + O(mn) \implies T(m,n) = O(mn \log n)$

Remark. Analysis is not tight because two sub-problems are of size (q, n/2) and (m - q, n/2). In next slide, we save log n factor.

Sequence Alignment: Running Time Analysis

Theorem. Let T(m, n) = max running time of algorithm on strings of length m and n. T(m, n) = O(mn).

Pf. (by induction on $n \cdot m$)

- O(mn) time to compute $f(\cdot, n/2)$ and $g(\cdot, n/2)$ and find index q.
- T(q, n/2) + T(m q, n/2) time for two recursive calls.
- Choose constant c so that:

$$T(m, 2) \leq cm$$

$$T(2, n) \leq cn$$

$$T(m, n) \leq cmn + T(q, n/2) + T(m-q, n/2)$$

- Base cases: m = 2 or n = 2.
- Inductive hypothesis: $T(m', n') \le 2cm'n'$.

$$T(m,n) \leq T(q,n/2) + T(m-q,n/2) + cmn$$

$$\leq 2cqn/2 + 2c(m-q)n/2 + cmn$$

$$= cqn + cmn - cqn + cmn$$

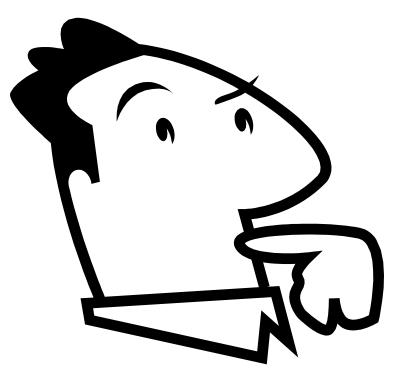
= 2cmn

Dynamic Programming Summary

Recipe.

- Characterize structure of problem.
- Recursively define value of optimal solution.
- Compute value of optimal solution.
- Construct optimal solution from computed information.

Dynamic programming techniques.


- Binary choice: weighted interval scheduling.
- Multi-way choice: segmented least squares. DP to optimize a maximum likelihood
- Adding a new variable: knapsack.
- Dynamic programming over intervals: RNA secondary structure.

CKY parsing algorithm for context-free grammar has similar structure

Top-down vs. bottom-up: different people have different intuitions.

Viterbi algorithm for HMM also uses tradeoff between parsimony and accuracy

Fragen?

