Kapitel 3: Dynamic Programming

Inhalt:

- Weighted Interval Scheduling
- Segmented Least Squares
- Knapsack Problem
- Sequence Alignment

Knapsack Problem

Knapsack problem.

- Given n objects and a "knapsack."
- Item i weights $w_{i}>0$ kilograms and has value $v_{i}>0$.
- Knapsack has capacity of W kilograms.
- Goal: fill knapsack so as to maximize total value.

Ex: $\{3,4\}$ has value 40 .

	Item	Value	Weight
	1	1	1
$W=11$	2	6	2
	3	18	5
	4	22	6
	5	28	7

Greedy: repeatedly add item with maximum ratio v_{i} / w_{i}.
Ex: $\{5,2,1\}$ achieves only value $=35 \Rightarrow$ greedy not optimal.

Dynamic Programming: False Start

Def. OPT(i) = max profit subset of items $1, \ldots, i$.

- Case 1: OPT does not select item i.
- OPT selects best of $\{1,2, \ldots, i-1\}$
- Case 2: OPT selects item i.
- accepting item i does not immediately imply that we will have to reject other items
- without knowing what other items were selected before i, we don' \dagger even know if we have enough room for i

Conclusion. Need more sub-problems!

Dynamic Programming: Adding a New Variable

Def. OPT $(i, w)=$ max profit subset of items $1, \ldots, i$ with weight limit w.

- Case 1: OPT does not select item i.
- OPT selects best of $\{1,2, \ldots, i-1\}$ using weight limit w
- Case 2: OPT selects item i.
- new weight limit $=w-w_{i}$
- OPT selects best of $\{1,2, \ldots, i-1\}$ using this new weight limit

Knapsack Problem: Bottom-Up

Knapsack. Fill up an n-by-W array.

```
Input: n, W, W
for w = 0 to W
    M[0, w] = 0
for i = 1 to n
    for w = 1 to w
        if (wi
        M[i, w] = M[i-1, w]
        else
        M[i,w] = max {M[i-1,w], vi}+M[i-1,w-wic]
return M[n, W]
```

Knapsack Algorithm

$$
\longrightarrow \quad w+1
$$

		0	1	2	3	4	5	6	7	8	9	10	11
	¢	0	0	0	0	0	0	0	0	0	0	0	0
	\{1\}	0	1	1	1	1	1	1	1	1	1	1	1
$n+1$	\{1, 2 \}	0	1	6	7	7	7	7	7	7	7	7	7
	\{1, 2, 3\}	0	1	6	7	7	18	19	24	25	25	25	25
	$\{1,2,3,4\}$	0	1	6	7	7	18	22	24	28	29	29	40
	$\{1,2,3,4,5\}$	0	1	6	7	7	18	22	28	29	34	35	40

OPT: $\{4,3\}$
value $=22+18=40$

	Item	Value	Weight
	1	1	1
W=11	2	6	2
	3	18	5
	4	22	6
	5	28	7

Knapsack Problem: Running Time

Running time. $\Theta(n \mathrm{~W})$.

- Not polynomial in input size!
. "Pseudo-polynomial."
- Decision version of Knapsack is NP-complete.

Knapsack approximation algorithm. There exists a polynomial algorithm that produces a feasible solution that has value within 0.01% of optimum.

Kapitel 3: Dynamic Programming

Inhalt:

- Weighted Interval Scheduling
- Segmented Least Squares
- Knapsack Problem
- Sequence Alignment

String Similarity

How similar are two strings?

- ocurrance
- occurrence

6 mismatches, 1 gap

0	c	-	u	r	r		a	n	c	e
0	c	c	u	r	r		e	n	c	e

Edit Distance

Applications.

- Basis for Unix diff.
- Speech recognition.
- Computational biology.

Edit distance. [Levenshtein 1966, Needleman-Wunsch 1970]

- Gap penalty δ; mismatch penalty $\alpha_{p q}$.
- Cost = sum of gap and mismatch penalties.

c	T	G	A	C	c	T	A	c	c	T	-	c	T	G	A		c	c	T	A		c	c	T
c	c	T	G	A	C	T	A	c	A	T	c	c	T	G	A		c	-	T	A		c	A	T
																	+							

Sequence Alignment

Goal: Given two strings $X=x_{1} x_{2} \ldots x_{m}$ and $Y=y_{1} y_{2} \ldots y_{n}$ find alignment of minimum cost.

Def. An alignment M is a set of ordered pairs $x_{i}-y_{j}$ such that each item occurs in at most one pair and no crossings.

Def. The pair $x_{i}-y_{j}$ and $x_{i^{\prime}}-y_{j^{\prime}}$ cross if $i\left\langle i^{\prime}\right.$, but $\left.j\right\rangle j^{\prime}$.

Ex: Ctaccg vs. tacatg.

x_{1}	x_{2}	x_{3}	x_{4}	x_{5}		x_{6}	
C	T	A	C	C	-	G	
-	T	A	C	A	T	G	
		y_{1}	y_{2}	y_{3}	y_{4}	y_{5}	y_{6}

Sequence Alignment: Problem Structure

Def. OPT $(i, j)=$ min cost of aligning strings $x_{1} x_{2} \ldots x_{i}$ and $y_{1} y_{2} \ldots y_{j}$.

- Case 1: OPT matches $x_{i}-y_{j}$.
- pay cost for $x_{i}-y_{j}+\min$ cost of aligning two strings $x_{1} x_{2} \ldots x_{i-1}$ and $y_{1} y_{2} \ldots y_{j-1}$
- Case 2a: OPT leaves x_{i} unmatched.
- pay gap for x_{i} and min cost of aligning $x_{1} x_{2} \ldots x_{i-1}$ and $y_{1} y_{2} \ldots y_{j}$
- Case 2b: OPT leaves y_{j} unmatched.
- pay gap for y_{j} and min cost of aligning $x_{1} x_{2} \ldots x_{i}$ and $y_{1} y_{2} \ldots y_{j-1}$

Sequence Alignment: Algorithm

```
Sequence-Alignment(m, n, x }\mp@subsup{x}{1}{}\mp@subsup{x}{2}{}\ldots\mp@subsup{x}{m}{},\mp@subsup{y}{1}{}\mp@subsup{y}{2}{}\ldots\mp@subsup{y}{n}{},\delta,\alpha) 
    for j = 0 to m
        M[0, j] = j\delta
    for i = 0 to n
        M[i, 0] = i\delta
    for i = 1 to m
        for j = 1 to n
            M[i, j] = min(\alpha[xi, yj] + M[i-1, j-1],
                        \delta + M[i-1, j],
                        \delta + M[i, j-1])
    return M[m, n]
}
```

Analysis. $\Theta(m n)$ time and space.
English words or sentences: $m, n \leq 10$.
Computational biology: $m=n=100,000.10$ billions ops OK, but 10 GB array?

Sequence Alignment: Linear Space

Q. Can we avoid using quadratic space?

Easy. Optimal value in $O(m+n)$ space and $O(m n)$ time.

- Compute OPT(i, •) from OPT(i-1, •).
- No longer a simple way to recover alignment itself.

Theorem. [Hirschberg 1975] Optimal alignment in $O(m+n)$ space and $O(m n)$ time.

- Clever combination of divide-and-conquer and dynamic programming.
- Inspired by idea of Savitch from complexity theory.

Sequence Alignment: Linear Space

Edit distance graph.

- Let $f(i, j)$ be shortest path from $(0,0)$ to (i, j).
- Observation: $f(i, j)=\operatorname{OPT}(i, j)$.

Sequence Alignment: Linear Space

Edit distance graph.

- Let $f(i, j)$ be shortest path from $(0,0)$ to (i, j).
- Can compute $f(\cdot, j)$ for any j in $O(m n)$ time and $O(m+n)$ space.

Sequence Alignment: Linear Space

Edit distance graph.

- Let $g(i, j)$ be shortest path from (i, j) to (m, n).
- Can compute by reversing the edge orientations and inverting the roles of $(0,0)$ and (m, n)

Sequence Alignment: Linear Space

Edit distance graph.

- Let $g(i, j)$ be shortest path from (i, j) to (m, n).
- Can compute $g(\cdot, j)$ for any j in $O(m n)$ time and $O(m+n)$ space.

Sequence Alignment: Linear Space

Observation 1. The cost of the shortest path that uses (i, j) is $f(i, j)+g(i, j)$.

Sequence Alignment: Linear Space

Observation 2. let q be an index that minimizes $f(q, n / 2)+g(q, n / 2)$. Then, the shortest path from $(0,0)$ to (m, n) uses $(q, n / 2)$.

Sequence Alignment: Linear Space

Divide: find index q that minimizes $f(q, n / 2)+g(q, n / 2)$ using DP.

- Align x_{q} and $y_{n / 2}$.

Conquer: recursively compute optimal alignment in each piece.

Sequence Alignment: Running Time Analysis Warmup

Theorem. Let $T(m, n)=$ max running time of algorithm on strings of length at most m and $n . T(m, n)=O(m n \log n)$.

$$
T(m, n) \leq 2 T(m, n / 2)+O(m n) \Rightarrow T(m, n)=O(m n \log n)
$$

Remark. Analysis is not tight because two sub-problems are of size ($q, n / 2$) and ($m-q, n / 2$). In next slide, we save $\log n$ factor.

Sequence Alignment: Running Time Analysis

Theorem. Let $T(m, n)=\max$ running time of algorithm on strings of length m and $n . T(m, n)=O(m n)$.

Pf. (by induction on $n \cdot m$)

- $O(m n)$ time to compute $f(\cdot, n / 2)$ and $g(\cdot, n / 2)$ and find index q.
- $T(q, n / 2)+T(m-q, n / 2)$ time for two recursive calls.
- Choose constant c so that:

```
T(m,2) \leq cm
T(2,n)}\leqc
T(m,n)}\leqcmn+T(q,n/2)+T(m-q,n/2
```

- Base cases: $m=2$ or $n=2$.
- Inductive hypothesis: $T\left(m^{\prime}, n^{\prime}\right) \leq 2 c m^{\prime} n^{\prime}$.

$$
\begin{aligned}
T(m, n) & \leq T(q, n / 2)+T(m-q, n / 2)+c m n \\
& \leq 2 c q n / 2+2 c(m-q) n / 2+c m n \\
& =c q n+c m n-c q n+c m n \\
& =2 c m n
\end{aligned}
$$

Dynamic Programming Summary

Recipe.

- Characterize structure of problem.
- Recursively define value of optimal solution.
- Compute value of optimal solution.
- Construct optimal solution from computed information.

Dynamic programming techniques.

- Binary choice: weighted interval scheduling.

- Adding a new variable: knapsack.
- Dynamic programming over intervals: RNA secondary structure.

CKY parsing algorithm for context-free grammar has similar structure

Top-down vs. bottom-up: different people have different intuitions.

Fragen?

