Kapitel 4:

Approximation Algorithms

Approximation Algorithms

Q. Suppose I need to solve an NP-hard problem. What should I do?
A. Theory says you're unlikely to find a poly-time algorithm.

Must sacrifice one of three desired features.

- Solve problem to optimality.
- Solve problem in poly-time.
. Solve arbitrary instances of the problem.
ρ-approximation algorithm.
- Guaranteed to run in poly-time.
- Guaranteed to solve arbitrary instance of the problem
- Guaranteed to find solution within ratio ρ of true optimum.

Challenge. Need to prove a solution's value is close to optimum, without even knowing what optimum value is!

Kapitel 4: Approximation Algorithms

Inhalt:

- Greedy Techniques
- Load-Balancing Problem
- Center Selection Problem
- Pricing Method
- Vertex Cover Problem
- Linear Programming and Rounding
- Vertex Cover Problem
- Generalized Load-Balancing Problem
- Polynomial Time Approximation Scheme
- Knapsack Problem

Load Balancing

Input. m identical machines; n jobs, job j has processing time t_{j}.

- Job j must run contiguously on one machine.
- A machine can process at most one job at a time.

Def. Let $J(i)$ be the subset of jobs assigned to machine i. The load of machine i is $L_{i}=\Sigma_{j \in J(i)} t_{j}$.

Def. The makespan is the maximum load on any machine $L=\max _{i} L_{i}$.

Load balancing problem. Assign each job to a machine to minimize makespan.

Load Balancing: List Scheduling

List-scheduling algorithm.

- Consider n jobs in some fixed order.
- Assign job j to machine whose load is smallest so far.

```
List-Scheduling(m, n, th, t2,\ldots,t ( ) {
    for i = 1 to m {
        I
        J}(\mathbf{i})\leftarrow\phi\longleftarrowjobs assigned to machine i 
    }
    for j = 1 to n {
        i = argmin}\mp@subsup{\textrm{m}}{\textrm{k}}{}\mp@subsup{\textrm{L}}{\textrm{k}}{}\quad\leftarrow\mathrm{ machine i has smallest load
        J(i)}\leftarrowJ(i)\cup{j} \leftarrowa\mp@code{asign job j to machine i
        I
    }
}
```

Implementation. $O(n \log m)$ using a priority queue.

Load Balancing: List Scheduling

Machine 1

Machine 2
Machine 3

Load Balancing: List Scheduling

List schedule

Load Balancing: List Scheduling Analysis

Theorem. [Graham, 1966] Greedy algorithm is a 2-approximation.
. First worst-case analysis of an approximation algorithm.
. Need to compare resulting solution with optimal makespan L*.

Lemma 1. The optimal makespan $L^{*} \geq \max _{j} \dagger_{j}$.
Pf. Some machine must process the most time-consuming job. -

Lemma 2. The optimal makespan $L^{*} \geq \frac{1}{m} \sum_{j} t_{j}$.
Pf.

- The total processing time is $\Sigma_{j} \dagger_{j}$.
- One of m machines must do at least a $1 / \mathrm{m}$ fraction of total work. -

Load Balancing: List Scheduling Analysis

Theorem. Greedy algorithm is a 2-approximation.
Pf. Consider load L_{i} of bottleneck machine i.

- Let j be last job scheduled on machine i.
- When job j assigned to machine i, i had smallest load. Its load before assignment is $L_{i}-t_{j} \Rightarrow L_{i}-t_{j} \leq L_{k}$ for all $1 \leq k \leq m$.

Load Balancing: List Scheduling Analysis

Theorem. Greedy algorithm is a 2-approximation.
Pf. Consider load L_{i} of bottleneck machine i.

- Let j be last job scheduled on machine i.
- When job j assigned to machine i, i had smallest load. Its load before assignment is $L_{i}-t_{j} \Rightarrow L_{i}-t_{j} \leq L_{k}$ for all $1 \leq k \leq m$.
- Sum inequalities over all k and divide by m :

$$
\begin{aligned}
L_{i}-t_{j} & \leq \frac{1}{m} \sum_{k} L_{k} \\
& =\frac{1}{m} \sum_{k} t_{k} \\
\text { Lemma } 2 \rightarrow & \leq L^{*}
\end{aligned}
$$

- Now

$$
L_{i}=\underbrace{\left(L_{i}-t_{j}\right)}_{\leq L^{*}}+\underbrace{t_{j}}_{\substack{\leq L^{*} \\ \text { Lemma } 1}} \leq 2 L^{*} .
$$

Load Balancing: List Scheduling Analysis

Q. Is our analysis tight?
A. Essentially yes.

Ex: m machines, $m(m-1)$ jobs of length 1 , one job of length m
$m=10$

									machine 2 idle
									machine 3 idle
									machine 4 idle
									machine 5 idle
									machine 6 idle
									machine 7 idle
									machine 8 idle
									machine 9 idle

list scheduling makespan $=19$

Load Balancing: List Scheduling Analysis

Q. Is our analysis tight?
A. Essentially yes.

Ex: m machines, $m(m-1)$ jobs of length 1 , one job of length m
$m=10$

optimal makespan $=10$

Load Balancing: LPT Rule

Longest processing time (LPT). Sort n jobs in descending order of processing time, and then run list scheduling algorithm.

```
LPT-List-Scheduling(m, n, th, th,\ldots,t
    Sort jobs so that th \geq th2 \geq ... \geq t m
    for i = 1 to m {
        L
        J(i)}\leftarrow\phi\longleftarrowj\mp@code{jobs assigned to machine i
    }
    for j = 1 to n {
        i = argmin}\mp@subsup{\mp@code{k}}{\textrm{k}}{\mathbf{k}
        J(i)}\leftarrowJ(i)\cup{j} \leftarrowassign job j to machine 
        Li
    }
}
```


Load Balancing: LPT Rule

Observation. If at most m jobs, then list-scheduling is optimal.
Pf. Each job put on its own machine. -
Lemma 3. If there are more than m jobs, $L^{*} \geq 2 t_{m+1}$.
Pf.

- Consider first $m+1$ jobs t_{1}, \ldots, t_{m+1}.
- Since the t_{i} 's are in descending order, each takes at least t_{m+1} time.
- There are $m+1$ jobs and m machines, so by pigeonhole principle, at least one machine gets two jobs. -

Theorem. LPT rule is a $3 / 2$ approximation algorithm.
Pf. Same basic approach as for list scheduling.

$$
L_{i}=\underbrace{\left(L_{i}-t_{j}\right)}_{\leq L^{*}}+\underbrace{t_{j}}_{\substack{\leq \frac{1}{2} L^{*}}} \leq \frac{3}{2} L^{*} . \quad .
$$

Q. Is our $3 / 2$ analysis tight?
A. No.

Theorem. [Graham, 1969] LPT rule is a 4/3-approximation.
Pf. More sophisticated analysis of same algorithm.
Q. Is Graham's $4 / 3$ analysis tight?
A. Essentially yes.

Ex: m machines, $n=2 m+1$ jobs, 2 jobs of length $m+1, m+2, \ldots, 2 m-1,2 m$ and one job of length m.

Kapitel 4:
 Approximation Algorithms

Inhalt:

- Greedy Techniques
- Load-Balancing Problem
- Center Selection Problem
- Pricing Method
- Vertex Cover Problem
- Linear Programming and Rounding
- Vertex Cover Problem
- Generalized Load-Balancing Problem
- Polynomial Time Approximation Scheme
- Knapsack Problem

Center Selection Problem

Input. Set of n sites s_{1}, \ldots, s_{n} and integer $k>0$.

Center selection problem. Select k centers C so that maximum distance from a site to nearest center is minimized.

Center Selection Problem

Input. Set of n sites s_{1}, \ldots, s_{n} and integer $k>0$.

Center selection problem. Select k centers C so that maximum distance from a site to nearest center is minimized.

Notation.

- $\operatorname{dist}(x, y)=$ distance between x and y.
- $\operatorname{dist}\left(s_{i}, C\right)=\min _{c \in C} \operatorname{dist}\left(s_{i}, c\right)=$ distance from s_{i} to closest center.
- $r(C)=$ max $_{\mathrm{i}} \operatorname{dist}\left(s_{i}, C\right)=$ smallest covering radius.

Goal. Find set of centers C that minimizes $r(C)$, subject to $|C|=k$.

Distance function properties.

- $\operatorname{dist}(x, x)=0$
- $\operatorname{dist}(x, y)=\operatorname{dist}(y, x)$
- $\operatorname{dist}(x, y) \leq \operatorname{dist}(x, z)+\operatorname{dist}(z, y)$
(identity)
(symmetry)
(triangle inequality)

Greedy Algorithm: A False Start

Greedy algorithm. Put the first center at the best possible location for a single center, and then keep adding centers so as to reduce the covering radius each time by as much as possible.

Remark: arbitrarily bad!

Center Selection: Greedy Algorithm

Greedy algorithm. Repeatedly choose the next center to be the site farthest from any existing center.

```
Greedy-Center-Selection(k, n, s
    C = ф
    repeat k times {
        Select a site si
    Add sit to C
    } site farthest from any center
    return C
}
```

Observation. Upon termination all centers in C are pairwise at least $r(C)$ apart.
Pf. By construction of algorithm.

Center Selection: Analysis of Greedy Algorithm

Theorem. Let C^{\star} be an optimal set of centers. Then $r(C) \leq 2 r\left(C^{*}\right)$. Pf. (by contradiction) Assume $r\left(C^{\star}\right)<\frac{1}{2} r(C)$.

- For each site c_{i} in C, consider ball of radius $\frac{1}{2} r(C)$ around it.
- Exactly one c_{i}^{*} in each ball; let c_{i} be the site paired with c_{i}^{*}.
- Consider any site s and its closest center c_{i}^{*} in C^{\star}.
- $\operatorname{dist}(s, C) \leq \operatorname{dist}\left(s, c_{i}\right) \leq \operatorname{dist}\left(s, c_{\mathrm{i}}^{*}\right)+\operatorname{dist}\left(c_{\mathrm{i}}^{*}, c_{\mathrm{i}}\right) \leq 2 r\left(C^{\star}\right)$.
- Thus $\mathrm{r}(C) \leq 2 r\left(C^{\star}\right)$. . Δ-inequality

Center Selection

Theorem. Let C^{*} be an optimal set of centers. Then $r(C) \leq 2 r\left(C^{*}\right)$.

Theorem. Greedy algorithm is a 2-approximation for center selection problem.

Remark. Greedy algorithm always places centers at sites, but is still within a factor of 2 of best solution that is allowed to place centers anywhere.
e.g., points in the plane

Question. Is there hope of a 3/2-approximation? 4/3?

Theorem. Unless P = NP, there is no ρ-approximation for center-selection problem for any $\rho<2$ and $k>2$.

Center Selection: Hardness of Approximation

Theorem. Unless P = NP, there is no ρ-approximation algorithm for metric k-center problem for any $\rho<2$.

Pf. We show how we could use a $(2-\varepsilon$) approximation algorithm for k center to solve DOMINATING-SET in poly-time.

- Let $G=(V, E), k$ be an instance of DOMINATING-SET.
- Construct instance G^{\prime} of k-center with sites V and distances
$-d(u, v)=1$ if $(u, v) \in E$
$-d(u, v)=2$ if $(u, v) \notin E$
- Note that G^{\prime} satisfies the triangle inequality.
- Claim: G has dominating set of size k iff there exists k centers C^{*} with $r\left(C^{\star}\right)=1$.
- Thus, if G has a dominating set of size $k, a(2-\varepsilon)$-approximation algorithm on G^{\prime} must find a solution C^{\star} with $r\left(C^{\star}\right)=1$ since it cannot use any edge of distance 2.

Fragen?

