Kapitel 4: Approximation Algorithms

Approximation Algorithms

- Q. Suppose I need to solve an NP-hard problem. What should I do?
- A. Theory says you're unlikely to find a poly-time algorithm.

Must sacrifice one of three desired features.

- Solve problem to optimality.
- Solve problem in poly-time.
- Solve arbitrary instances of the problem.

ρ-approximation algorithm.

- Guaranteed to run in poly-time.
- Guaranteed to solve arbitrary instance of the problem
- Guaranteed to find solution within ratio ρ of true optimum.

Challenge. Need to prove a solution's value is close to optimum, without even knowing what optimum value is!

Kapitel 4: Approximation Algorithms

Inhalt:

- Greedy Techniques
 - Load-Balancing Problem
 - Center Selection Problem
- Pricing Method
 - Vertex Cover Problem
- Linear Programming and Rounding
 - Vertex Cover Problem
 - Generalized Load-Balancing Problem
- Polynomial Time Approximation Scheme
 - Knapsack Problem

Load Balancing

Input. m identical machines; n jobs, job j has processing time t_j .

- Job j must run contiguously on one machine.
- A machine can process at most one job at a time.

Def. Let J(i) be the subset of jobs assigned to machine i. The load of machine i is L_i = $\Sigma_{j \in J(i)}$ t_j .

Def. The makespan is the maximum load on any machine $L = \max_i L_i$.

Load balancing problem. Assign each job to a machine to minimize makespan.

List-scheduling algorithm.

- Consider n jobs in some fixed order.
- Assign job j to machine whose load is smallest so far.

Implementation. O(n log m) using a priority queue.

Theorem. [Graham, 1966] Greedy algorithm is a 2-approximation.

- First worst-case analysis of an approximation algorithm.
- Need to compare resulting solution with optimal makespan L*.

Lemma 1. The optimal makespan $L^* \ge \max_j t_j$.

Pf. Some machine must process the most time-consuming job. •

Lemma 2. The optimal makespan $L^* \geq \frac{1}{m} \sum_j t_j$. Pf.

- The total processing time is $\Sigma_j t_j$.
- One of m machines must do at least a 1/m fraction of total work.

Theorem. Greedy algorithm is a 2-approximation.

Pf. Consider load Li of bottleneck machine i.

- Let j be last job scheduled on machine i.
- When job j assigned to machine i, i had smallest load. Its load before assignment is L_i t_j \Rightarrow L_i t_j \leq L_k for all $1 \leq k \leq m$.

Theorem. Greedy algorithm is a 2-approximation.

Pf. Consider load Li of bottleneck machine i.

- Let j be last job scheduled on machine i.
- When job j assigned to machine i, i had smallest load. Its load before assignment is L_i t_j \Rightarrow L_i t_j \leq L_k for all $1 \leq k \leq m$.
- Sum inequalities over all k and divide by m:

- Q. Is our analysis tight?
- A. Essentially yes.

Ex: m machines, m(m-1) jobs of length 1, one job of length m

				machine 2 idle
				machine 3 idle
				machine 4 idle
				machine 5 idle
				machine 6 idle
				machine 7 idle
				machine 8 idle
				machine 9 idle
				machine 10 idle

m = 10

- Q. Is our analysis tight?
- A. Essentially yes.

Ex: m machines, m(m-1) jobs of length 1, one job of length m

Load Balancing: LPT Rule

Longest processing time (LPT). Sort n jobs in descending order of processing time, and then run list scheduling algorithm.

```
LPT-List-Scheduling(m, n, t_1, t_2, ..., t_n) {
    Sort jobs so that t_1 \ge t_2 \ge \dots \ge t_n
    for i = 1 to m {
         L_i \leftarrow 0 \leftarrow load on machine i
         J(i) \leftarrow \phi \leftarrow jobs assigned to machine i
    for j = 1 to n {
         i = argmin_k L_k \leftarrow machine i has smallest load
         J(i) \leftarrow J(i) \cup \{j\} \leftarrow assign job j to machine i
        L_i \leftarrow L_i + t_i \leftarrow update load of machine i
```

Load Balancing: LPT Rule

Observation. If at most m jobs, then list-scheduling is optimal.

Pf. Each job put on its own machine. •

Lemma 3. If there are more than m jobs, $L^* \ge 2 t_{m+1}$. Pf.

- Consider first m+1 jobs $t_1, ..., t_{m+1}$.
- Since the t_i 's are in descending order, each takes at least t_{m+1} time.
- There are m+1 jobs and m machines, so by pigeonhole principle, at least one machine gets two jobs.

Theorem. LPT rule is a 3/2 approximation algorithm.

Pf. Same basic approach as for list scheduling.

$$L_i = \underbrace{(L_i - t_j)}_{\leq L^*} + \underbrace{t_j}_{\leq \frac{1}{2}L^*} \leq \underbrace{\tfrac{3}{2}L^*}. \quad \blacksquare$$
 Lemma 3 (by observation, can assume number of jobs > m)

Load Balancing: LPT Rule

- Q. Is our 3/2 analysis tight?
- A. No.

Theorem. [Graham, 1969] LPT rule is a 4/3-approximation.

- Pf. More sophisticated analysis of same algorithm.
- Q. Is Graham's 4/3 analysis tight?
- A. Essentially yes.

Ex: m machines, n = 2m+1 jobs, 2 jobs of length m+1, m+2, ..., 2m-1, 2m and one job of length m.

Kapitel 4: Approximation Algorithms

Inhalt:

- Greedy Techniques
 - Load-Balancing Problem
 - Center Selection Problem
- Pricing Method
 - Vertex Cover Problem
- Linear Programming and Rounding
 - Vertex Cover Problem
 - Generalized Load-Balancing Problem
- Polynomial Time Approximation Scheme
 - Knapsack Problem

Center Selection Problem

Input. Set of n sites $s_1, ..., s_n$ and integer k > 0.

Center selection problem. Select k centers C so that maximum distance from a site to nearest center is minimized.

Center Selection Problem

Input. Set of n sites $s_1, ..., s_n$ and integer k > 0.

Center selection problem. Select k centers C so that maximum distance from a site to nearest center is minimized.

Notation.

- dist(x, y) = distance between x and y.
- dist(s_i , C) = min $c \in C$ dist(s_i , c) = distance from s_i to closest center.
- $r(C) = \max_i dist(s_i, C) = smallest covering radius.$

Goal. Find set of centers C that minimizes r(C), subject to |C| = k.

Distance function properties.

dist
$$(x, x) = 0$$
 (identity)
dist $(x, y) = dist(y, x)$ (symmetry)
dist $(x, y) \le dist(x, z) + dist(z, y)$ (triangle inequality)

Greedy Algorithm: A False Start

Greedy algorithm. Put the first center at the best possible location for a single center, and then keep adding centers so as to reduce the covering radius each time by as much as possible.

Remark: arbitrarily bad!

Center Selection: Greedy Algorithm

Greedy algorithm. Repeatedly choose the next center to be the site farthest from any existing center.

```
Greedy-Center-Selection(k, n, s<sub>1</sub>, s<sub>2</sub>,...,s<sub>n</sub>) {
    C = \( \phi \)
    repeat k times {
        Select a site s<sub>i</sub> with maximum dist(s<sub>i</sub>, C)
        Add s<sub>i</sub> to C
        }
            site farthest from any center
    return C
}
```

Observation. Upon termination all centers in C are pairwise at least r(C) apart.

Pf. By construction of algorithm.

Center Selection: Analysis of Greedy Algorithm

Theorem. Let C^* be an optimal set of centers. Then $r(C) \le 2r(C^*)$. Pf. (by contradiction) Assume $r(C^*) < \frac{1}{2} r(C)$.

- For each site c_i in C, consider ball of radius $\frac{1}{2}$ r(C) around it.
- Exactly one c_i^* in each ball; let c_i be the site paired with c_i^* .
- Consider any site s and its closest center c_i^* in C^* .
- $dist(s, C) \leq dist(s, c_i) \leq dist(s, c_i^*) + dist(c_i^*, c_i) \leq 2r(C^*)$.
- Thus $r(C) \le 2r(C^*)$. \\ \(\times_{\text{\delta}-inequality}\) \\ \(\times_{\text{\delta}} r(C^*) \) since c_i^* is closest center

Center Selection

Theorem. Let C^* be an optimal set of centers. Then $r(C) \leq 2r(C^*)$.

Theorem. Greedy algorithm is a 2-approximation for center selection problem.

Remark. Greedy algorithm always places centers at sites, but is still within a factor of 2 of best solution that is allowed to place centers anywhere.

e.g., points in the plane

Question. Is there hope of a 3/2-approximation? 4/3?

Theorem. Unless P = NP, there is no ρ -approximation for center-selection problem for any ρ < 2 and k > 2.

Center Selection: Hardness of Approximation

Theorem. Unless P = NP, there is no ρ -approximation algorithm for metric k-center problem for any $\rho < 2$.

Pf. We show how we could use a $(2 - \varepsilon)$ approximation algorithm for k-center to solve DOMINATING-SET in poly-time.

- Let G = (V, E), k be an instance of DOMINATING-SET.
- Construct instance G' of k-center with sites V and distances
 - $-d(u, v) = 1 \text{ if } (u, v) \in E$
 - d(u, v) = 2 if (u, v) ∉ E
- Note that G' satisfies the triangle inequality.
- Claim: G has dominating set of size k iff there exists k centers C^* with $r(C^*) = 1$.
- Thus, if G has a dominating set of size k, a (2ε) -approximation algorithm on G' must find a solution C* with $r(C^*) = 1$ since it cannot use any edge of distance 2.

Fragen?

