Kapitel 4:
 Approximation Algorithms

Inhalt:

- Greedy Techniques
- Load-Balancing Problem
- Center Selection Problem
- Pricing Method
- Vertex Cover Problem
- Linear Programming and Rounding
- Vertex Cover Problem
- Generalized Load-Balancing Problem
- Polynomial Time Approximation Scheme
- Knapsack Problem

Weighted Vertex Cover

Weighted vertex cover. Given a graph G with vertex weights, find a vertex cover of minimum weight.

weight $=2+2+4=8$

weight $=9$

Weighted Vertex Cover

Pricing method. Each edge must be covered by some vertex i. Edge e pays price $p_{e} \geq 0$ to use vertex i.

Fairness. Edges incident to vertex i should pay $\leq w_{i}$ in total.

$$
\text { for each vertex } i: \sum_{e=(i, j)} p_{e} \leq w_{i}
$$

Claim. For any vertex cover S and any fair prices $p_{e}: \Sigma_{e} p_{e} \leq w(S)$. Proof.

$$
\begin{aligned}
& \qquad \sum_{e \in E} p_{e} \leq \sum_{i \in S} \sum_{e=(i, j)} p_{e} \leq \sum_{i \in S} w_{i}=w(S) . \\
& \begin{array}{ll}
\text { each edge e covered by } & \\
\text { at least one node in } S & \text { sum fairness inequalities } \\
\text { for each node in } S
\end{array}
\end{aligned}
$$

Pricing Method

Pricing method. Set prices and find vertex cover simultaneously.

```
Weighted-Vertex-Cover-Approx(G, w) {
    foreach e in E
        pe}=
    while (\exists edge i-j such that neither i nor j are tight)
        select such an edge e
        increase pe without violating fairness
    }
    S }\leftarrow\mathrm{ set of all tight nodes
    return S
}
```


Pricing Method

Pricing Method: Analysis

Theorem. Pricing method is a 2-approximation.
Pf.

- Algorithm terminates since at least one new node becomes tight after each iteration of while loop.
- Let $S=$ set of all tight nodes upon termination of algorithm. S is a vertex cover: if some edge $i-j$ is uncovered, then neither i nor j is tight. But then while loop would not terminate.
- Let S^{*} be optimal vertex cover. We show $w(S) \leq 2 w\left(S^{*}\right)$.

$$
\begin{aligned}
w(S)= & \sum_{i \in S} w_{i}=\sum_{i \in S} \sum_{e=(i, j)} p_{e} \leq \sum_{i \in V} \sum_{e=(i, j)} p_{e}=2 \sum_{e \in E} p_{e} \leq 2 w\left(S^{*}\right) \\
& \uparrow \uparrow \uparrow \uparrow \\
\text { all nodes in S are tight } \quad \begin{array}{l}
S \subseteq V, \\
\text { prices } \geq 0
\end{array} & \text { each edge counted twice fairness lemma }
\end{aligned}
$$

Kapitel 4:

Approximation Algorithms

- Greedy Techniques
- Load-Balancing Problem
- Center Selection Problem
- Pricing Method
- Vertex Cover Problem
- Linear Programming and Rounding
- Vertex Cover Problem
- Generalized Load-Balancing Problem
- Polynomial Time Approximation Scheme
- Knapsack Problem

Integer Programming

INTEGER-PROGRAMMING.

Given integers $a_{i j}$ and b_{i}, c_{j} find integers x_{j} that satisfy:

```
max c}\mp@subsup{c}{}{t}
```

max c}\mp@subsup{c}{}{t}
s.t. Ax \geqb
s.t. Ax \geqb
x integral

```
    x integral
```

```
max }\mp@subsup{\sum}{j=1}{n}\mp@subsup{c}{j}{}\mp@subsup{x}{j}{
s.t.
\[
\begin{aligned}
\sum_{j=1}^{n} a_{i j} x_{j} & \geq b_{i} & & 1 \leq i \leq m \\
x_{j} & \geq 0 & & 1 \leq j \leq n \\
x_{j} & & \text { integral } & 1 \leq j \leq n
\end{aligned}
\]
```

Linear programming. Max/min linear objective function subject to linear inequalities.

- Input: integers $c_{j}, b_{i}, a_{i j}$.
- Output: real numbers x_{j}.

$$
\text { (LP) } \begin{aligned}
& \max \sum_{j=1}^{n} c_{j} x_{j} \\
& \text { s.t. } \sum_{j=1}^{n} a_{i j} x_{j} \geq b_{i} \quad 1 \leq i \leq m \\
& x_{j} \geq 0 \quad 1 \leq j \leq n
\end{aligned}
$$

Linear. No $x^{2}, x y, \arccos (x), x(1-x)$, etc.

Simplex algorithm. [Dantzig 1947] Can often solve LP in practice. Ellipsoid algorithm. [Khachian 1979] Can solve LP in poly-time. Interior Point Method. [Karmarkar 1984] Practical poly-time algorithm.

LP Feasible Region

LP geometry in 2D.

Weighted Vertex Cover

Weighted vertex cover. Given an undirected graph $G=(V, E)$ with vertex weights $w_{i} \geq 0$, find a minimum weight subset of nodes S such that every edge is incident to at least one vertex in S.

total weight $=55$

Weighted Vertex Cover: IP Formulation

Weighted vertex cover. Given an undirected graph $G=(V, E)$ with vertex weights $w_{i} \geq 0$, find a minimum weight subset of nodes S such that every edge is incident to at least one vertex in S.

Integer programming formulation.

- Model inclusion of each vertex iusing a $0 / 1$ variable x_{i}.

$$
x_{i}= \begin{cases}0 & \text { if vertex } i \text { is not in vertex cover } \\ 1 & \text { if vertex } i \text { is in vertex cover }\end{cases}
$$

Vertex covers in 1-1 correspondence with 0/1 assignments:

$$
S=\left\{i \in V: x_{i}=1\right\}
$$

- Objective function: minimize $\Sigma_{i} w_{i} x_{i}$.
- Must take either i or j for each edge $(i, j): x_{i}+x_{j} \geq 1$.

Weighted Vertex Cover: IP Formulation

Weighted vertex cover. Integer programming formulation.

$$
\begin{array}{rlll}
(\text { ILP }) \min & \sum_{i \in V} w_{i} x_{i} & & \\
\text { s.t. } & x_{i}+x_{j} & \geq 1 & (i, j) \in E \\
& x_{i} & \in\{0,1\} & i \in V
\end{array}
$$

Observation. If x^{*} is optimal solution to (ILP), then $S=\left\{i \in V: x^{\star}{ }_{i}=1\right\}$ is a min weight vertex cover.

Weighted Vertex Cover: LP Relaxation

Weighted vertex cover. Linear programming formulation.

$$
\begin{array}{rlll}
(L P) \min & \sum_{i \in V} w_{i} x_{i} & \\
\text { s.t. } & x_{i}+x_{j} & \geq 1 \quad(i, j) \in E \\
& x_{i} & \geq 0 \quad i \in V
\end{array}
$$

Observation. Optimal value of (LP) is \leq optimal value of (ILP). Pf. LP has fewer constraints.

Note. LP is not equivalent to vertex cover.

Q. How can solving LP help us find a small vertex cover?
$x_{3}=\frac{1}{2}$
A. Solve LP and round fractional values.

Weighted Vertex Cover

Theorem. If x^{*} is optimal solution to (LP), then $S=\left\{i \in V: x^{*}{ }_{i} \geq \frac{1}{2}\right\}$ is a vertex cover whose weight is at most twice the min possible weight.

Pf. [S is a vertex cover]

- Consider an edge $(i, j) \in E$.
- Since $x^{\star}{ }_{i}+x^{\star}{ }_{j} \geq 1$, either $x^{\star}{ }_{i} \geq \frac{1}{2}$ or $x^{\star}{ }_{j} \geq \frac{1}{2} \Rightarrow(i, j)$ covered.

Pf. [S has desired cost]

- Let S^{\star} be optimal vertex cover. Then

$$
\begin{array}{cc}
\sum_{i \in S^{*}} w_{i} \geq \sum_{i \in S} w_{i} x_{i}^{*} & \geq \frac{1}{2} \sum_{i \in S} w_{i} \\
\qquad \begin{array}{ll}
\text { LP is a relaxation } & x^{\star} \\
i
\end{array} \geq \frac{1}{2}
\end{array}
$$

Weighted Vertex Cover

Theorem. [Hochbaum 1982] 2-approximation algorithm for weighted vertex cover.

Theorem. [Dinur-Safra 2001] If $P \neq N P$, then no ρ-approximation for $\rho<1.3607$, even with unit weights.

```
        10\sqrt{}{5}-21
```

Open research problem. Close the gap.

Integer Programming

INTEGER-PROGRAMMING.

Given integers $a_{i j}, b_{i}$, and c_{i}, find integers x_{j} that satisfy:

Integer Programming

INTEGER-PROGRAMMING.

Given integers $a_{i j}, b_{i}$, and c_{i}, find integers x_{j} that satisfy:

```
min}\mp@subsup{c}{}{t}
    s.t. Ax \geqb
    x integral
```

The primal dual problem is defined as follows:
Given integers $a_{i j}, b_{i}$, and c_{i}, find integers y_{j} that satisfy:

Fragen?

