Kapitel 4: Approximation Algorithms

Inhalt:

- Greedy Techniques
 - Load-Balancing Problem
 - Center Selection Problem
- Pricing Method
 - Vertex Cover Problem
- Linear Programming and Rounding
 - Vertex Cover Problem
 - Generalized Load-Balancing Problem
- Polynomial Time Approximation Scheme
 - Knapsack Problem

Weighted vertex cover. Given a graph G with vertex weights, find a vertex cover of minimum weight.

weight = 2 + 2 + 4 = 8

weight = 9

Pricing method. Each edge must be covered by some vertex i. Edge e pays price $p_e \ge 0$ to use vertex i.

Fairness. Edges incident to vertex i should pay $\leq w_i$ in total.

Claim. For any vertex cover S and any fair prices p_e : $\sum_e p_e \le w(S)$. Proof.

$$\sum_{e \in E} p_e \leq \sum_{i \in S} \sum_{e=(i,j)} p_e \leq \sum_{i \in S} w_i = w(S).$$

each edge e covered by at least one node in S

sum fairness inequalities for each node in S

Pricing Method

Pricing method. Set prices and find vertex cover simultaneously.

Pricing Method

Pricing Method: Analysis

Theorem. Pricing method is a 2-approximation. Pf.

- Algorithm terminates since at least one new node becomes tight after each iteration of while loop.
- Let S = set of all tight nodes upon termination of algorithm. S is a vertex cover: if some edge i-j is uncovered, then neither i nor j is tight. But then while loop would not terminate.
- Let S* be optimal vertex cover. We show $w(S) \leq 2w(S^*)$.

$$w(S) = \sum_{i \in S} w_i = \sum_{i \in S} \sum_{e=(i,j)} p_e \leq \sum_{i \in V} \sum_{e=(i,j)} p_e = 2 \sum_{e \in E} p_e \leq 2w(S^*).$$
all nodes in S are tight $S \subseteq V$, each edge counted twice fairness lemma prices ≥ 0

Kapitel 4: Approximation Algorithms

- Greedy Techniques
 - Load-Balancing Problem
 - Center Selection Problem
- Pricing Method
 - Vertex Cover Problem
- Linear Programming and Rounding
 - Vertex Cover Problem
 - Generalized Load-Balancing Problem
- Polynomial Time Approximation Scheme
 - Knapsack Problem

Integer Programming

INTEGER-PROGRAMMING.

Given integers a_{ij} and b_i , c_j find integers x_j that satisfy:

$$\max \sum_{j=1}^{n} c_{j} x_{j}$$

s.t.
$$\sum_{j=1}^{n} a_{ij} x_{j} \geq b_{i} \qquad 1 \leq i \leq m$$
$$x_{j} \geq 0 \qquad 1 \leq j \leq n$$
$$x_{j} \qquad \text{integral} \qquad 1 \leq j \leq n$$

Linear Programming

Linear programming. Max/min linear objective function subject to linear inequalities.

- Input: integers c_j, b_i, a_{ij}.
- Output: real numbers x_j.

(LP) max $c^{t}x$ s.t. $Ax \ge b$ $x \ge 0$ (LP) max $\sum_{j=1}^{n} c_{j}x_{j}$ s.t. $\sum_{j=1}^{n} a_{ij}x_{j} \ge b_{i}$ $1 \le i \le m$ $x_{j} \ge 0$ $1 \le j \le n$

Linear. No x^2 , xy, arccos(x), x(1-x), etc.

Simplex algorithm. [Dantzig 1947] Can often solve LP in practice. Ellipsoid algorithm. [Khachian 1979] Can solve LP in poly-time. Interior Point Method. [Karmarkar 1984] Practical poly-time algorithm.

LP Feasible Region

LP geometry in 2D.

Weighted vertex cover. Given an undirected graph G = (V, E) with vertex weights $w_i \ge 0$, find a minimum weight subset of nodes S such that every edge is incident to at least one vertex in S.

total weight = 55

Weighted Vertex Cover: IP Formulation

Weighted vertex cover. Given an undirected graph G = (V, E) with vertex weights $w_i \ge 0$, find a minimum weight subset of nodes S such that every edge is incident to at least one vertex in S.

Integer programming formulation.

• Model inclusion of each vertex i using a 0/1 variable x_i .

 $x_i = \begin{cases} 0 & \text{if vertex } i \text{ is not in vertex cover} \\ 1 & \text{if vertex } i \text{ is in vertex cover} \end{cases}$

Vertex covers in 1-1 correspondence with 0/1 assignments: S = {i \in V : x_i = 1}

- Objective function: minimize $\Sigma_i w_i x_i$.
- Must take either i or j for each edge (i,j): $x_i + x_j \ge 1$.

Weighted Vertex Cover: IP Formulation

Weighted vertex cover. Integer programming formulation.

(ILP) min
$$\sum_{i \in V} w_i x_i$$

s. t. $x_i + x_j \ge 1$ $(i, j) \in E$
 $x_i \in \{0,1\}$ $i \in V$

Observation. If x* is optimal solution to (ILP), then S = { $i \in V : x_i^* = 1$ } is a min weight vertex cover.

Weighted Vertex Cover: LP Relaxation

Weighted vertex cover. Linear programming formulation.

$$(LP) \min \sum_{i \in V} w_i x_i$$

s.t. $x_i + x_j \ge 1$ $(i, j) \in E$
 $x_i \ge 0$ $i \in V$

Observation. Optimal value of (LP) is \leq optimal value of (ILP). Pf. LP has fewer constraints.

Theorem. If x* is optimal solution to (LP), then S = { $i \in V : x_i^* \ge \frac{1}{2}$ } is a vertex cover whose weight is at most twice the min possible weight.

Pf. [S is a vertex cover]

- Consider an edge (i, j) \in E.
- Since $x_i^* + x_j^* \ge 1$, either $x_i^* \ge \frac{1}{2}$ or $x_j^* \ge \frac{1}{2} \implies (i, j)$ covered.

Pf. [S has desired cost]

Let S* be optimal vertex cover. Then

$$\sum_{i \in S^{*}} w_{i} \geq \sum_{i \in S} w_{i} x_{i}^{*} \geq \frac{1}{2} \sum_{i \in S} w_{i}$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$
LP is a relaxation $x^{*}_{i} \geq \frac{1}{2}$

Theorem. [Hochbaum 1982] 2-approximation algorithm for weighted vertex cover.

```
Theorem. [Dinur-Safra 2001] If P \neq NP, then no \rho-approximation for \rho < 1.3607, even with unit weights. 
 10 \sqrt{5} - 21
```

Open research problem. Close the gap.

Integer Programming

INTEGER-PROGRAMMING.

Given integers a_{ij} , b_i , and c_i , find integers x_j that satisfy:

Integer Programming

INTEGER-PROGRAMMING.

Given integers a_{ij} , b_i , and c_i , find integers x_j that satisfy:

The primal dual problem is defined as follows: Given integers a_{ij} , b_i , and c_i , find integers y_j that satisfy:

Fragen?

