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Generalized Load Balancing

Input.  Set of m machines M; set of n jobs J.

 Job j must run contiguously on an authorized machine in Mj  M.

 Job j has processing time tj.

 Each machine can process at most one job at a time.

Def.  Let J(i) be the subset of jobs assigned to machine i.  The

load of machine i is Li = j  J(i) tj. 

Def. The makespan is the maximum load on any machine = maxi Li.

Generalized load balancing problem.  Assign each job to an authorized 

machine to minimize makespan.
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Generalized Load Balancing:  Integer Linear Program and Relaxation

ILP formulation.  xij = time machine i spends processing job j.

LP relaxation.  



(IP) min L

s. t. xi j
i

  t j for all j  J

xi j
j

  L for all i  M

xi j  {0, t j } for all j  J and i  M j

xi j  0 for all j  J and i  M j



(LP) min L

s. t. xi j
i

  t j for all j  J

xi j
j

  L for all i  M

xi j  0 for all j  J and i  M j

xi j  0 for all j  J and i  M j
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Generalized Load Balancing:  Lower Bounds

Lemma 1.  Let L be the optimal value to the LP. Then, the optimal 

makespan  L*  L.

Pf.  LP has fewer constraints than IP formulation.

Lemma 2.  The optimal makespan L*  maxj tj.

Pf.  Some machine must process the most time-consuming job.  ▪

Probem:  How can we do the rounding?
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Generalized Load Balancing:  Structure of LP Solution

Lemma 3.  Let x be solution to LP.  Let G(x) be the graph with an edge 

from machine i to job j if xij > 0.  Then G(x) is acyclic.

Pf.  (deferred)

G(x) acyclic
job

machine

can transform x into another LP solution where
G(x) is acyclic if LP solver doesn't return such an x

G(x) cyclic

xij > 0
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Generalized Load Balancing:  Rounding

Rounded solution.  Find LP solution x where G(x) is a forest.  Root 

forest G(x) at some arbitrary machine node r.

 If job j is a leaf node, assign j to its parent machine i.

 If job j is not a leaf node, assign j to one of its children.

Lemma 4.  Rounded solution only assigns jobs to authorized machines.

Pf. If job j is assigned to machine i, then xij > 0.  LP solution can only 

assign positive value to authorized machines.   ▪

job

machine
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Generalized Load Balancing:  Analysis

Lemma 5.  If job j is a leaf node and machine i = parent(j), then xij = tj.

Pf. Since j is a leaf, xij = 0 for all i  parent(j).   LP constraint 

guarantees i xij = tj.   ▪

Lemma 6.  At most one non-leaf job is assigned to a machine.

Pf. The only possible non-leaf job assigned to machine i is parent(i).  ▪

job

machine
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Generalized Load Balancing:  Analysis

Theorem. [Lenstra, Shmoys, Tardos 1990] Rounded solution is a 

2-approximation.

Pf.

 Let J(i) be the jobs assigned to machine i.

 By Lemma 5+6, the load Li on machine i has two components:

– leaf nodes

– parent(i)

 Thus, the overall load Li  2L*.   ▪



t j
  j   J(i)
j is a leaf

   xij
  j   J(i)
j is a leaf

    xij
j   J

    L    L *

Lemma 5 Lemma 1 (LP is a relaxation)



tparent (i)    L *

LP

Lemma 2

optimal value of LP
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Lemma 3.  Let (x, L) be solution to LP.  Let G(x) be the graph with an edge 

from machine i to job j if xij > 0.  We can find another solution (x', L) 

such that G(x') is acyclic.

Pf.  Let C be a cycle in G(x).

 Augment flow along the cycle C. 

 At least one edge from C is removed (and none are added).

 Repeat until G(x') is acyclic.

Generalized Load Balancing:  Structure of Solution

3
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G(x)

3

4

4

3

3 

4

1

6

5

G(x')
augment along C

flow conservation maintained
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Conclusions

Running time.  The bottleneck operation in our 2-approximation is

solving one LP with mn + 1 variables. 

Remark. Can solve LP using flow techniques on a graph with m+n+1 nodes: 

given L, find feasible flow if it exists.  Binary search to find L*.

Extensions:  unrelated parallel machines.  [Lenstra-Shmoys-Tardos 1990]

 Job j takes tij time if processed on machine i.

 2-approximation algorithm via LP rounding.

 No 3/2-approximation algorithm unless P = NP.
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Flow formulation of LP.

Observation.  Solution to feasible flow problem with value L are in one-

to-one correspondence with LP solutions of value L.  

Generalized Load Balancing:  Flow Formulation





xi j
i

  t j for all j  J

xi j
j

  L for all i  M

xi j  0 for all j  J and i  M j

xi j  0 for all j  J and i  M j
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Polynomial Time Approximation Scheme

PTAS.  (1 + )-approximation algorithm for any constant  > 0. 

 Load balancing.  [Hochbaum-Shmoys 1987]

 Euclidean TSP.  [Arora 1996, Mitchell 1996]

Consequence.  PTAS produces arbitrarily high quality solution, but trades 

off accuracy for time. 

This section.  PTAS for knapsack problem via rounding and scaling.
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Knapsack Problem

Knapsack problem.

 Given n objects and a "knapsack."

 Item i has value vi  > 0 and weights wi > 0.

 Knapsack can carry weight up to W.

 Goal:  fill knapsack so as to maximize total value.

Ex:  { 3, 4 } has value 40.
1

Value

18

22

28

1

Weight

5

6

6 2

7

Item

1

3

4

5

2
W = 11

we'll assume wi  W 
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Knapsack Problem:  Dynamic Programming 1

Def.  OPT(i, w) = max value subset of items  1,..., i with weight limit w.

 Case 1:  OPT does not select item i.

– OPT selects best of 1, …, i–1 using up to weight limit w

 Case 2:  OPT selects item i.

– new weight limit = w – wi

– OPT selects best of 1, …, i–1 using up to weight limit w – wi

Running time.  O(n W).

 W = weight limit.

 Not polynomial in input size!

  



OPT (i, w) 

0 if  i  0

OPT (i 1, w) if  wi  w

max OPT (i 1, w), vi  OPT (i 1, wwi )  otherwise











17

Knapsack Problem:  Dynamic Programming II

Def.  OPT(i, v) = min weight subset of items 1, …, i that yields value 

exactly v.

 Case 1:  OPT does not select item i.

– OPT selects best of 1, …, i-1 that achieves exactly value v

 Case 2:  OPT selects item i.

– consumes weight wi, new value needed = v – vi

– OPT selects best of 1, …, i-1 that achieves exactly value v – vi

Running time.  O(n V*) = O(n2 vmax).

 V* = optimal value = maximum v such that OPT(n, v)  W.

 Not polynomial in input size!



OPT (i, v) 

0 if  v  0

 if  i  0, v > 0

OPT (i1, v) if  vi  v

min OPT (i1, v), wi  OPT (i 1, v vi )  otherwise













V*  n vmax
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Knapsack:  FPTAS

Intuition for approximation algorithm.

 Round all values up to lie in smaller range.

 Run dynamic programming algorithm on rounded instance.

 Return optimal items in rounded instance.

Item Value Weight

1 134,221 1

2 656,342 2

3 1,810,013 5

4 22,217,800 6

5 28,343,199 7

W = 11

Item Value Weight

1 2 1

2 7 2

3 19 5

4 223 6

5 284 7

original instance rounded instance

W = 11












i

ii

v
vv ˆ

iv̂

000,100
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Knapsack:  FPTAS

Knapsack FPTAS.  Round up all values:  

– vmax = largest value in original instance

–  = precision parameter

–  =  scaling factor  =   vmax / n

Observation.  Optimal solution to problems with     or     are equivalent.

Intuition.   close to v, so optimal solution using    is nearly optimal;

small and integral, so dynamic programming algorithm is fast.

Running time.  O(n3 / ). 

 Dynamic program II running time is                ,  where
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Knapsack:  FPTAS

Knapsack FPTAS.  Round up all values:  

Theorem.  If S is solution found by our algorithm and S* is any other 

feasible solution then

Pf.  Let S* be any feasible solution satisfying weight constraint. 



vi
i  S*

  v i
i  S*



 v i
i  S



 (vi
i  S

  )

 vi
i S

   n

 (1) vi
i S



always round up

solve rounded instance optimally

never round up by more than 

  



(1) vi    vi

i  S*


iS



|S|  n

n  =  vmax and vmax  iS vi

DP alg can take vmax




 







 i

i

v
v











i

i

v
v̂  iii vvv  



14.06.2017 Kapitel 4 21

Fragen?


