Kapitel 4:
Approximation Algorithms

Inhalt:

« Greedy Techniques
— Load-Balancing Problem
— Center Selection Problem
* Pricing Method
— Vertex Cover Problem
 Linear Programming and Rounding
— Vertex Cover Problem
— Generalized Load-Balancing Problem
« Polynomial Time Approximation Scheme

— Knapsack Problem
14.06.2017 Kapitel 4

Generalized Load Balancing

Input. Set of m machines M; set of n jobs J.
- Job j must run contiguously on an authorized machine in M; ¢ M.
- Job j has processing time t;.
. Each machine can process at most one job at a time.

Def. Let J(i) be the subset of jobs assigned to machine i. The

load of machineiisL; =%, s, t;

Def. The makespan is the maximum load on any machine = max; L..

Generalized load balancing problem. Assign each job to an authorized
machine to minimize makespan.

Generalized Load Balancing: Integer Linear Program and Relaxation

ILP formulation. x;; = time machine i spends processing job j.

LP relaxation.

Generalized Load Balancing: Lower Bounds

Lemma 1. Let L be the optimal value to the LP. Then, the optimal
makespan L* > L.
Pf. LP has fewer constraints than IP formulation.

Lemma 2. The optimal makespan L* > max; t;.
Pf. Some machine must process the most time-consuming job. =

Probem: How can we do the rounding?

Generalized Load Balancing: Structure of LP Solution

Lemma 3. Let x be solution to LP. Let G(x) be the graph with an edge
from machine i to job jif x;;>0. Then 6(x) is acyclic.

T

can transform x into another LP solution where
Pf (deferred) 6(x) is acyclic if LP solver doesn't return such an x

7 o

OO O OO O

G(x) acyclic O . G(x) cyclic
Jjob

machine

Generalized Load Balancing: Rounding

Rounded solution. Find LP solution x where G(x) is a forest. Root
forest G(x) at some arbitrary machine node r.

. If job jis aleaf node, assign j to its parent machine i.

. If job jis not aleaf node, assign j to one of its children.

Lemma 4. Rounded solution only assigns jobs to authorized machines.
Pf. If job jis assigned to machine i, then x;; > 0. LP solution can only
assign positive value to authorized machines. =

: <
N
4 ~
4 N
s ~
,
~

Each internal job node is
assigned to an arbitrary child.

() Jjob

machine ; 2

Generalized Load Balancing: Analysis

Lemma 5. If job j is a leaf node and machine i = parent(j), then x;; = t;.
Pf. Since j is a leaf, x;; = O for all i # parent(j). LP constraint
guarantees %; x;; = f;. -

Lemma 6. At most one non-leaf job is assigned to a machine.
Pf. The only possible non-leaf job assigned to machine i is parent(i). =

Each internal job node is
assigned to an arbitrary child.

() Jjob

machine ; 2

Generalized Load Balancing: Analysis

Theorem. [Lenstra, Shmoys, Tardos 1990] Rounded solution is a
2-approximation.
Pf.

. Let J(i)be the jobs assigned to machine i.

. By Lemma 5+6, the load L; on machine i has two components:

Lemma 5 LP Lemmal (LP is a relaxation)
- leaf nodes | |
j e J() i e J() jed T
j Is a leaf j Is a leaf
optimal value of LP
Lemma 2
- PGI"QHT(i) 1:parent(i) < L*

. Thus, the overall load L, < 2L*. -

Generalized Load Balancing: Structure of Solution

Lemma 3. Let (x, L) be solution to LP. Let G(x) be the graph with an edge
from machine i to job j if x;; > 0. We can find another solution (x’, L)
such that G(x") is acyclic.

Pf. Let C be a cycle in 6(x).
. Augment flow along the cycle C. «— flow conservation maintained
. At least one edge from C is removed (and none are added).
. Repeat until 6(x") is acyclic.

30_3 30_3
6 6
VX > O >@
1 5 5

augment along C

6(x) . G(x')

Conclusions

Running time. The bottleneck operation in our 2-approximation is
solving one LP with mn + 1 variables.

Remark. Can solve LP using flow techniques on a graph with m+n+1 nodes:
given L, find feasible flow if it exists. Binary search to find L*.

Extensions: unrelated parallel machines. [Lenstra-Shmoys-Tardos 1990]
- Job j takes t;; time if processed on machine i.
. 2-approximation algorithm via LP rounding.
. No 3/2-approximation algorithm unless P = NP.

10

Generalized Load Balancing: Flow Formulation

Flow formulation of LP.

Jobs

Q0 Machines
ZX”— = tj for a”J ed Supply = t;(j L
i
inj < L forallieM
] . . i L
Xij = 0 foralljeJandie M; : v)Demand = 2,
Xij = 0 foralljeJandig¢ M;

Observation. Solution to feasible flow problem with value L are in one-
to-one correspondence with LP solutions of value L.

11

14.06.2017

Fragen?

Kapitel 4

12

Kapitel 4:
Approximation Algorithms

Inhalt:

« Greedy Techniques
— Load-Balancing Problem
— Center Selection Problem
* Pricing Method
— Vertex Cover Problem
« Linear Programming and Rounding
— Vertex Cover Problem
— Generalized Load-Balancing Problem
* Polynomial Time Approximation Scheme

— Knapsack Problem
14.06.2017 Kapitel 4

13

Polynomial Time Approximation Scheme

PTAS. (1 +¢)-approximation algorithm for any constant ¢ > O.
. Load balancing. [Hochbaum-Shmoys 19871
. Euclidean TSP. [Arora 1996, Mitchell 1996]

Consequence. PTAS produces arbitrarily high quality solution, but trades

off accuracy for time.

This section. PTAS for knapsack problem via rounding and scaling.

14

Knapsack Problem

Knapsack problem.
. Given nobjects and a "knapsack."
. Item i has value v; > 0 and weights w;> 0. we'llassume w;<W
- Knapsack can carry weight up fo W.
. Goal: fill knapsack so as to maximize total value.

Ex: (3,4 hs value 40.

1 1 1
2 6 2
w=il 3 18 5
4 22 6
5 28 7

Knapsack Problem: Dynamic Programming 1

Def. OPT(i, w) = max value subset of items 1,..., i with weight limit w.
. Case 1: OPT does not select item i.
- OPT selects best of 1, ..., i-1 using up to weight limit w
. Case 2: OPT selects item i.
- new weight limit = w - w;
- OPT selects best of 1, ..., i-1 using up to weight limit w - w;

0 if i=0
OPT (i,w)=4 OPT(i—1,w) if w, >w
| max {OPT (i—-1,w), v;+ OPT(i—1,w-w;)} otherwise

Running time. O(n W).
. W = weight limit.
. Not polynomial in input size!

16

Knapsack Problem: Dynamic Programming IT

Def. OPT(i, v) = min weight subset of items 1, ..., i that yields value

exactly v.
. Case 1: OPT does not select item i.
- OPT selects best of 1, ..., i-1 that achieves exactly value v

. Case 2: OPT selects item i.
- consumes weight w;, new value needed = v - v;

- OPT selects best of 1, ..., i-1 that achieves exactly value v - v,
0 if v=0
_ 00 if i=0,v>0
OPT (i, v) =1 : :
OPT (i—1, V) if vi>v
| min{OPT (i-1,v), w;+ OPT(i-1,v-v;)} otherwise

*x
V* <N Vpox

<
Running time. O(n V*) = O(n? v, ,,).
. V* = optimal value = maximum v such that OPT(n, v) < W.
. Not polynomial in input size!

17

Knapsack: FPTAS

Intuition for approximation algorithm.
. Round all values up to lie in smaller range. v, —>\7i={ﬂ
. Run dynamic programming algorithm on rounded instance. ¥
- Return optimal items in rounded instance.

1 134,221 1 1 2 1

2 656,342 2 2 7 2

3 1,810,013 5 — 3 19 5

4 22,217,800 6 0 =100,000 4 223 6

5 28,343,199 7 5 284 7
W =11 w=11

original instance rounded instance

Knapsack: FPTAS

Knapsack FPTAS. Round up all values: vi:{ﬂ

- Vpox = largest value in original instance
- ¢ = precision parameter
-0 = scaling factor = ev, ., /n

Observation. Optimal solution to problems with V or V are equivalent.

Intuition. V close to v, so optimal solution usingV is nearly optimal;
V small and integral, so dynamic programming algorithm is fast.

Running time. O(n3/ g).

. Dynamic program II running time is O(n’v,), where

19

Knapsack: FPTAS

Knapsack FPTAS. Round up all values: vi:{ﬂ v:(ﬂe Vv, <Y<V, +6

Theorem. If S is solution found by our algorithm and S* is any other
feasible solution then (1+&>X> v. > X v,

ieS i e S*

Pf. Let S* be any feasible solution satisfying weight constraint.

_ always round up
XV, <XV
i e S* i e S*

< ¥ v solve rounded instance optimally
ieS

< 3 (Vi + 0) never round up by more than 6
ieS

< YV + nd S| <n
ieS DP alg can take vy,

< (1+8) Z VI no =e Viax and Vimax < 2ies Vi

20

14.06.2017

Fragen?

Kapitel 4

21

