
14.06.2017 Kapitel 4 1

Kapitel 4:

Approximation Algorithms

Inhalt:

• Greedy Techniques
– Load-Balancing Problem

– Center Selection Problem

• Pricing Method
– Vertex Cover Problem

• Linear Programming and Rounding
– Vertex Cover Problem

– Generalized Load-Balancing Problem

• Polynomial Time Approximation Scheme
– Knapsack Problem

2

Generalized Load Balancing

Input. Set of m machines M; set of n jobs J.

 Job j must run contiguously on an authorized machine in Mj M.

 Job j has processing time tj.

 Each machine can process at most one job at a time.

Def. Let J(i) be the subset of jobs assigned to machine i. The

load of machine i is Li = j J(i) tj.

Def. The makespan is the maximum load on any machine = maxi Li.

Generalized load balancing problem. Assign each job to an authorized

machine to minimize makespan.

3

Generalized Load Balancing: Integer Linear Program and Relaxation

ILP formulation. xij = time machine i spends processing job j.

LP relaxation.

(IP) min L

s. t. xi j
i

 t j for all j J

xi j
j

 L for all i M

xi j {0, t j } for all j J and i M j

xi j 0 for all j J and i M j

(LP) min L

s. t. xi j
i

 t j for all j J

xi j
j

 L for all i M

xi j 0 for all j J and i M j

xi j 0 for all j J and i M j

4

Generalized Load Balancing: Lower Bounds

Lemma 1. Let L be the optimal value to the LP. Then, the optimal

makespan L* L.

Pf. LP has fewer constraints than IP formulation.

Lemma 2. The optimal makespan L* maxj tj.

Pf. Some machine must process the most time-consuming job. ▪

Probem: How can we do the rounding?

5

Generalized Load Balancing: Structure of LP Solution

Lemma 3. Let x be solution to LP. Let G(x) be the graph with an edge

from machine i to job j if xij > 0. Then G(x) is acyclic.

Pf. (deferred)

G(x) acyclic
job

machine

can transform x into another LP solution where
G(x) is acyclic if LP solver doesn't return such an x

G(x) cyclic

xij > 0

6

Generalized Load Balancing: Rounding

Rounded solution. Find LP solution x where G(x) is a forest. Root

forest G(x) at some arbitrary machine node r.

 If job j is a leaf node, assign j to its parent machine i.

 If job j is not a leaf node, assign j to one of its children.

Lemma 4. Rounded solution only assigns jobs to authorized machines.

Pf. If job j is assigned to machine i, then xij > 0. LP solution can only

assign positive value to authorized machines. ▪

job

machine

7

Generalized Load Balancing: Analysis

Lemma 5. If job j is a leaf node and machine i = parent(j), then xij = tj.

Pf. Since j is a leaf, xij = 0 for all i parent(j). LP constraint

guarantees i xij = tj. ▪

Lemma 6. At most one non-leaf job is assigned to a machine.

Pf. The only possible non-leaf job assigned to machine i is parent(i). ▪

job

machine

8

Generalized Load Balancing: Analysis

Theorem. [Lenstra, Shmoys, Tardos 1990] Rounded solution is a

2-approximation.

Pf.

 Let J(i) be the jobs assigned to machine i.

 By Lemma 5+6, the load Li on machine i has two components:

– leaf nodes

– parent(i)

 Thus, the overall load Li 2L*. ▪

t j
 j J(i)
j is a leaf

 xij
 j J(i)
j is a leaf

 xij
j J

 L L *

Lemma 5 Lemma 1 (LP is a relaxation)

tparent (i) L *

LP

Lemma 2

optimal value of LP

9

Lemma 3. Let (x, L) be solution to LP. Let G(x) be the graph with an edge

from machine i to job j if xij > 0. We can find another solution (x', L)

such that G(x') is acyclic.

Pf. Let C be a cycle in G(x).

 Augment flow along the cycle C.

 At least one edge from C is removed (and none are added).

 Repeat until G(x') is acyclic.

Generalized Load Balancing: Structure of Solution

3

4

4

3

2

3

1

2

6

5

G(x)

3

4

4

3

3

4

1

6

5

G(x')
augment along C

flow conservation maintained

10

Conclusions

Running time. The bottleneck operation in our 2-approximation is

solving one LP with mn + 1 variables.

Remark. Can solve LP using flow techniques on a graph with m+n+1 nodes:

given L, find feasible flow if it exists. Binary search to find L*.

Extensions: unrelated parallel machines. [Lenstra-Shmoys-Tardos 1990]

 Job j takes tij time if processed on machine i.

 2-approximation algorithm via LP rounding.

 No 3/2-approximation algorithm unless P = NP.

11

Flow formulation of LP.

Observation. Solution to feasible flow problem with value L are in one-

to-one correspondence with LP solutions of value L.

Generalized Load Balancing: Flow Formulation

xi j
i

 t j for all j J

xi j
j

 L for all i M

xi j 0 for all j J and i M j

xi j 0 for all j J and i M j

14.06.2017 Kapitel 4 12

Fragen?

14.06.2017 Kapitel 4 13

Kapitel 4:

Approximation Algorithms

Inhalt:

• Greedy Techniques
– Load-Balancing Problem

– Center Selection Problem

• Pricing Method
– Vertex Cover Problem

• Linear Programming and Rounding
– Vertex Cover Problem

– Generalized Load-Balancing Problem

• Polynomial Time Approximation Scheme
– Knapsack Problem

14

Polynomial Time Approximation Scheme

PTAS. (1 +)-approximation algorithm for any constant > 0.

 Load balancing. [Hochbaum-Shmoys 1987]

 Euclidean TSP. [Arora 1996, Mitchell 1996]

Consequence. PTAS produces arbitrarily high quality solution, but trades

off accuracy for time.

This section. PTAS for knapsack problem via rounding and scaling.

15

Knapsack Problem

Knapsack problem.

 Given n objects and a "knapsack."

 Item i has value vi > 0 and weights wi > 0.

 Knapsack can carry weight up to W.

 Goal: fill knapsack so as to maximize total value.

Ex: { 3, 4 } has value 40.
1

Value

18

22

28

1

Weight

5

6

6 2

7

Item

1

3

4

5

2
W = 11

we'll assume wi W

16

Knapsack Problem: Dynamic Programming 1

Def. OPT(i, w) = max value subset of items 1,..., i with weight limit w.

 Case 1: OPT does not select item i.

– OPT selects best of 1, …, i–1 using up to weight limit w

 Case 2: OPT selects item i.

– new weight limit = w – wi

– OPT selects best of 1, …, i–1 using up to weight limit w – wi

Running time. O(n W).

 W = weight limit.

 Not polynomial in input size!

OPT (i, w)

0 if i 0

OPT (i 1, w) if wi w

max OPT (i 1, w), vi OPT (i 1, wwi) otherwise

17

Knapsack Problem: Dynamic Programming II

Def. OPT(i, v) = min weight subset of items 1, …, i that yields value

exactly v.

 Case 1: OPT does not select item i.

– OPT selects best of 1, …, i-1 that achieves exactly value v

 Case 2: OPT selects item i.

– consumes weight wi, new value needed = v – vi

– OPT selects best of 1, …, i-1 that achieves exactly value v – vi

Running time. O(n V*) = O(n2 vmax).

 V* = optimal value = maximum v such that OPT(n, v) W.

 Not polynomial in input size!

OPT (i, v)

0 if v 0

 if i 0, v > 0

OPT (i1, v) if vi v

min OPT (i1, v), wi OPT (i 1, v vi) otherwise

V* n vmax

18

Knapsack: FPTAS

Intuition for approximation algorithm.

 Round all values up to lie in smaller range.

 Run dynamic programming algorithm on rounded instance.

 Return optimal items in rounded instance.

Item Value Weight

1 134,221 1

2 656,342 2

3 1,810,013 5

4 22,217,800 6

5 28,343,199 7

W = 11

Item Value Weight

1 2 1

2 7 2

3 19 5

4 223 6

5 284 7

original instance rounded instance

W = 11

i

ii

v
vv ˆ

iv̂

000,100

19

Knapsack: FPTAS

Knapsack FPTAS. Round up all values:

– vmax = largest value in original instance

– = precision parameter

– = scaling factor = vmax / n

Observation. Optimal solution to problems with or are equivalent.

Intuition. close to v, so optimal solution using is nearly optimal;

small and integral, so dynamic programming algorithm is fast.

Running time. O(n3 /).

 Dynamic program II running time is , where

 i

i

v
v

ˆ v

v

v

v

ˆ v

O(n2 ˆ v max)

nv
v ˆ max

max

i

i

v
v̂

20

Knapsack: FPTAS

Knapsack FPTAS. Round up all values:

Theorem. If S is solution found by our algorithm and S* is any other

feasible solution then

Pf. Let S* be any feasible solution satisfying weight constraint.

vi
i S*

 v i
i S*

 v i
i S

 (vi
i S

)

 vi
i S

 n

 (1) vi
i S

always round up

solve rounded instance optimally

never round up by more than

(1) vi vi

i S*

iS

|S| n

n = vmax and vmax iS vi

DP alg can take vmax

 i

i

v
v

i

i

v
v̂ iii vvv

14.06.2017 Kapitel 4 21

Fragen?

