Übungen zur Vorlesung Methoden des Algorithmenentwurfs SS 2017 Blatt 7

Aufgabe 17:

- a) An *independent set* of an undirected graph G = (V, E) is a subset $U \subseteq V$ such that for every two vertices in U, there is no edge connecting the two. A maximum independent set is a largest independent set for a given graph G. The problem of finding such a set is called the *IndependentSetProblem*. Reformulate this problem as an ILP.
- b) A problem instance of MaxCut is an undirected, connected graph G = (V, E) with $|E| \ge 1$. A feasible solution of MaxCut is a partition $S = [V_{\ominus}, V_{\oplus}]$ of the node set V, so that $V_{\ominus} \cup V_{\oplus} = V$ and $V_{\ominus} \cap V_{\oplus} = \emptyset$. S is called a *cut* in G. An edge $\{u, v\} \in E$ is called *cut-edge* with respect to S, if $u \in V_{\ominus}$ and $v \in V_{\oplus}$. Let

$$C(S) = |\{\{u, v\} \in E | u \in V_{\ominus}, v \in V_{\oplus}\}|$$

define the measurement of a cut S, called *cut-size*. The problem is to find a cut with maximum cut-size. Reformulate the MaxCut problem as an ILP.

Aufgabe 18:

The problem *FacilityLocation* is defined as follows:

Let F be a set of potential facilities and C a set of clients. Denote by f_i the cost of opening facility $i \in F$ and by c_{ij} the cost of connecting client $j \in C$ to the (open) facility $i \in F$. The c_{ij} 's satisfy the triangle inequality. The problem is to find a subset $I \subseteq F$ of facilities to open and an assignment $\phi : C \longrightarrow I$ of clients to open facilities minimizing the total cost

$$cost(I, \phi) = \sum_{i \in I} f_i + \sum_{j \in C} c_{\phi(j)j}.$$

Reformulate the *FacilityLocation* problem as an ILP.

Aufgabe 19:

We consider the "Weighted Set-Cover Problem" which is based on a set U of n elements and a list S_1, S_2, \ldots, S_m of subsets of U. We say that a *set cover* is a collection of these sets whose union is equal to all of U. Moreover, each set S_i has an associated *weight* $w_i \ge 0$. The goal is to find a set cover C so that the total weight $\sum_{S_i \in C} w_i$ is minimized. Someone suggests the following "Greedy-Set-Cover Algorithm" for the Weighted Set-Cover Problem: Start with R = U and no sets selected while $R \neq \emptyset$ do Select set S_i that minimizes $\frac{w_i}{|(S_i \cap R)|}$ Delete set S_i from RENDwhile Return the selected sets

Show that the "Greedy-Set-Cover Algorithm" can be thought of as a *pricing algorithm* and prove that the algorithm finds a solution within an approximation factor $O(\log n)$.