Randomized Algorithms

SS 2018

Homework Assignment 10

Problem 27:

In the shortest pairwise distance problem we are given a set of points V in the 2-dimensional Euclidean space and the problem is to find the pair of points of shortest Euclidean distance in V. Show that this is an LP-type problem and determine its combinatorial dimension.

Problem 28:

In the largest included rectangle problem we are given an arbitrary polygon P in a 2 -dimensional Euclidean space that is specified by a sequence of corners $V_{P}=\left\{v_{1}, \ldots, v_{n}\right\}$ and the goal is to find a rectangle of largest volume that can be placed inside of P. Show that this is an LP-type problem and determine its combinatorial dimension.

Problem 29:

Consider any integer linear program P with objective function $f(x)=c^{T} \cdot x$ and constraints $A x \leq b$ that has a finite number of solutions. Let $\# P$ be the problem of counting the number of feasible solutions for P, i.e., the number of vectors $x \in \mathbb{Z}^{n}$ that satisfy $A x \leq b$. Show that if $\# P$ can be solved in polynomial time then the optimal solution of P can be found in polynomial time.

Problem 30:

Prove Theorem 8.3.

