
8 Approximate Counting

8.1 Counting problems

A counting problem Π is defined like a combinatorial optimization problem. However, instead of trying
to find an optimal value according to some objective function, the task is to determine the number of
feasible solutions, #(I) = |S(I)|. In the following, the sign # always means “number” and will specify
that we have a counting problem.

Definition 8.1

(a) In the DNF counting problem (#DNF) we are given a Boolean expression Ψ in disjunctive normal
form (DNF) and the problem is to determine the number of satisfying assignments for Ψ. (Recall
that a Boolean expression in DNF has the form Ψ = D1∨D2∨ . . .∨Dm where Dj is an implicant,
i.e. a conjunction of one or more literals.)

(b) Let k ∈ IN. In the k-coloring counting problem #COLk we are given a graph G and the problem
is to determine the number of node colorings of G using at most k colors.

It is not difficult to see that counting problems are at least as hard as their decision variants. For
example, let the decision variant of the DNF counting problem be the problem to decide whether
a given expression Ψ in DNF has a non-satisfying assignment. In this case, an exact knowledge of
the number of satisfying assignments for Ψ would immediately give us the answer whether Ψ is not
satisfiable.

The complexity class #P consists of all counting problems Π for which there is a polynomial time
non-deterministic algorithm A (i.e. an algorithm with rules allowing alternative computations) so that
for any instance I the number of accepting computations when running A on I is equal to #(I). This
implies that A has an accepting computation if and only if #(I) ≥ 1. In other words, A can be used
to verify in polynomial time whether the question “#(I) ≥ 1?” is true. Thus, recalling the definition
of the complexity class NP, all decision variants of counting problems in #P (i.e., “#(I) ≥ 1?”)
are in NP. Like NP, also #P has complete problems. The #P-complete problems represent the
“most difficult” problems in #P. In fact, similar to the NP-complete problems, if a #P-complete
problem can be solved exactly in polynomial time, then all counting problems in #P can be solved in
polynomial time. Since the problem of counting all satisfying assignments of a Boolean expression Φ
in CNF is in #P and its decision variant is the SAT problem which, as we know, is NP-complete, a
#P-complete problem cannot be solved in polynomial time unless P = NP. Because #DNF is known
to be #P-complete, we can assume that #DNF is hard to solve exactly in polynomial time.

A prominent, classical counting problem that can be solved in polynomial time (and therefore is
most probably not #P-complete) is the problem of counting the number of spanning trees in a graph.
This number is equal to the determinant of the so-called Kirchhoff matrix (also known as Laplace
matrix) of the graph [Bol98, Section II.3], which can be computed in polynomial time. Also, the
number of Euler tours in a graph can be computed exactly in polynomial time.

Since #P-complete problems seem to be difficult to solve, it seems that there is no other choice
than to find good approximations. Interestingly, in this area no good deterministic approximation
algorithms are known but only good randomized approximation algorithms. An excellent overview of
algorithms for counting problems can be found in [Wel93].

Analogous to approximation algorithms for optimization problems, our aim will be to find approx-
imation algorithms for counting problems that try to get as close to the optimal solution (in this case,
the exact number of feasible solutions) as possible. For this we need the following notation.

1

Definition 8.2

(a) A polynomial (time) approximation scheme (PASC) for a counting problem Π is a deterministic
algorithm A that, for every instance I of Π and every constant 0 < ε < 1, determines a number
A(I) in time O(poly(|I|)) with

(1− ε) ·#(I) ≤ A(I) ≤ (1 + ε) ·#(I) . (1)

If the runtime is O(poly(|I|, 1/ε)) for any ε > 0, A is called a fully polynomial approximation
scheme (FPASC).

(b) A is a polynomial randomized approximation scheme (PRASC) if

Pr[(1− ε) ·#(I) ≤ A(I) ≤ (1 + ε) ·#(I)] ≥ 3

4
.

If the runtime is O(poly(|I|, 1/ε)), A is called a fully polynomial randomized approximation scheme
(FPRASC).

(c) A is an (ε, δ)-FPRASC if it can compute in time O(poly(|I|, 1/ε, log(1/δ))) a number A(I) with

Pr[(1− ε) ·#(I) ≤ A(I) ≤ (1 + ε) ·#(I)] ≥ 1− δ .

In all abbreviations above, the “C” stands for “counting”.

Note that we demand for an FPASC a runtime that is polynomial in 1/ε and not in log(1/ε). Using
log(1/ε) would have the consequence that the existance of an FPASC for a #P-complete problem would
imply that P = #P.

Condition (1) can also be expressed as |(A(I)/#(I))− 1| ≤ ε. Instead of a probability value of 3/4
one could also use another value as long as this value is at least some constant larger than 1/2, because
that would suffice to transform every FPRASC via probability amplification into an (ε, δ)-FPRASC.

Theorem 8.3 Every FPRASC A can be transformed into an (ε, δ)-FPRASC.

The proof is an assignment.

8.2 The classical Monte Carlo method

The goal of this section is to present a fully polynomial randomized approximation scheme for the DNF
counting problem that is based on the classical Monte Carlo method. First, we will see that a direct
approach can be too weak, and then we will show how to modify the description of the problem so that
we obtain a good approximation for all instances of #DNF.

8.2.1 The Monte Carlo algorithm and blind sampling

Let Π be a counting problem, and let for every instance I a (very large) set UI be given whose cardinality
is known and for which S(I) ⊆ UI . UI is called the universe or sample space for I. S(I) is the set
whose cardinality we have to determine. Let χ : UI → {0, 1} be the characteristic function of S(I), i.e.

χ(u) =

{
1 if u ∈ S(I)
0 otherwise

We demand two properties:

2

• There is a deterministic membership test Member that computes for every u ∈ UI the value of
χ(u) in time polynomial in |I|.

• There is a randomized algorithm UG that generates an element u ∈ UI in time polynomial in |I|
so that for any u ∈ UI ,

Pr[UG generates u] =
1

|UI |
.

The output of UG is called a sample of UI . Such a generator of samples is also called a uniform
generator. Consider now the following Monte Carlo algorithm MC:

Algorithm MC(T):

for i = 1 to T do
(1) use UG to draw a sample u ∈ UI
(2) use Member to compute Yi = χ(u)

R = T−1∑T
i=1 Yi

output Z = R · |UI |

In the following, we will always assume that

r =
#(I)

|UI |

represents the ratio of the size S(I) to the size of the universe UI . Since we use a uniform generator,
it holds that E[Yi] = r. Hence, E[R] = r and therefore

E[MC(T)] = E[Z] = r · |UI | = #(I) ,

independent of T . Thus, the expected value for Z computed by MC is the number we are searching
for. Intuitively, it should be clear that the more samples MC draws (i.e. the larger T), the closer it
will get to the exact value of #(I). However, how large does T have to be chosen to ensure that a
certain deviation from the expected value will only occur with small probability? This is answered by
the following theorem, which is also called the estimator theorem of the Monte Carlo method.

Theorem 8.4 For any ε, δ with 0 < ε, δ < 1 it holds with Tr(ε, δ) = d 3
r·ε2 ln(2/δ)e that

Pr[(1− ε) ·#(I) ≤ MC(Tr(ε, δ)) ≤ (1 + ε) ·#(I)] ≥ 1− δ .

Proof. Using the Chernoff bounds from Chapter 1 results in

Pr[(1− ε) ·#(I) ≤ MC(Tr(ε, δ)) ≤ (1 + ε) ·#(I)]

= Pr[(1− ε) ·#(I) ≤ R · |UI | ≤ (1 + ε) ·#(I)]

= Pr[(1− ε) · r ≤ R ≤ (1 + ε) · r]
= Pr[(1− ε) · Tr(ε, δ) · r ≤ Tr(ε, δ) ·R︸ ︷︷ ︸

sum of 0-1 r.v.

≤ (1 + ε) · Tr(ε, δ) · r]

≥ 1− 2e−Tr(ε,δ)·r·ε2/3
(∗)
≥ 1− 2e− ln(2/δ) = 1− δ .

In (∗) we used the value for Tr(ε, δ) defined above. ut

Does therefore MC(Tr(ε, δ)) represent an (ε, δ)-FPRASC for every counting problem? At first glance
this may seem to be the case, but the result has two weaknesses that result in a negative answer.

3

1. Tr(ε, δ) is linear in 1/r and therefore depends on the value #(I), so that we cannot determine
Tr(ε, δ) in advance. In order to specify Tr(ε, δ), we would first need a good estimate for 1/r.

2. Even more serious is the following observation: 1/r can be exponentially large! For example, if we
apply MC to #DNF, then we can define a class of Boolean expressions Ψ in DNF with n Boolean
variables and m implicants and the following characteristics: m = Θ(poly(n)), |Ψ| = Θ(n ·m),
UΨ = {False,True}n, |UΨ| = 2n, and #(Ψ) = 2n/2. We chose here as the universe all possible
truth assignments for the n Boolean variables. For this class of truth assignments it is very easy
to construct a uniform generator. Hence, r = 1/2n/2 and therefore Tr(ε, δ) = O(2n/2 ·(1

ε)
2 log(1

δ)).
Hence, the runtime is exponential in |Ψ|.

One could hope now that the Chernoff bounds are not precise enough, but unfortunately they are quite
accurate in our case. Hence, a more accurate analysis would only have a slight impact on T in the
algorithm MC(T).

In the example above, the universe only depends on the number n of variables but not on the inner
structure of Ψ. Therefore, one also calls this approach blind sampling.

8.3 Importance sampling

There is an approach in which the knowledge about the problem – in our case, this is the #DNF
problem – can be used to construct a universe UI so that the ratio r = #(I)/|UI | is significantly larger
than in the blind sampling case. This approach is also called importance sampling.

In the following, let Ψ = D1∨ . . .∨Dm a Boolean expression in DNF over n Boolean variables. The
number of literals in Dj is given by kj . We will use the following facts:

1. That we can easily construct a satisfying assignment for Ψ and

2. that we can exactly determine the number of satisfying assignments for a single implicant.

As an example, consider the first implicant of the expression Ψ = (x1 ∧ x̄2 ∧ x3) ∨ (x̄1 ∧ x̄4 ∧ x5). It
is easy to see that one can assign truth values to the variables x1, x2 and x3 so that this implicant is
true. For this there is exactly one assignment: x1 = x3 = True and x2 = False. The other variables
x4 and x5 can be chosen in an arbitrary way. Hence, altogether there are 22 = 4 satisfying assignments
for the first implicant. In general, it holds:

Lemma 8.5 Let D = `1∧. . .∧`k be an implicant with k literals in a Boolean expression over n Boolean
variables. Then there are exactly 2n−k satisfying assignments for D.

Consider now a truth assignment u that satisfies Ψ. In this case, it must satisfy at least one of the
implicants of Ψ. Hence,

S(Ψ) =
m⋃
j=1

{u | u satisfies Dj}

=
m⋃
j=1

{u | u satisfies Dj but no Di with i < j} .

The last inequality holds, since we only removed some redundant assignments u from the sets that
have already been considered earlier. Now, let us introduce a new set S′(Ψ) of feasible solutions with
the property that

S′(Ψ) =
m⋃
j=1

{(u, j) | u satisfies Dj but no Di with i < j} .

4

Obviously, #(Ψ) = |S(Ψ)| = |S′(Ψ)|. For S′(Ψ) we can provide a universe that can be much smaller
than in the blind sampling approach and that depends now on the inner structure of Ψ:

UΨ = {(u, j) | u satisfies Dj and j ∈ {1, . . . ,m}}

It certainly holds that S′(Ψ) ⊆ UΨ.
What did we do here? We excluded from the universe all assignments that do not fulfill Ψ. Truth

assignments appearing in pairs (u, j) ∈ UΨ are only satisfying truth assignments! It may be the case
that the same truth assignment appears in different pairs (u, j) and (u, j′), but no truth assignment
appears more than m times. In contrast to S′(Ψ), UΨ ignores the fact that the j in the pair (u, j)
may specify the first implicant that is satisfied by u. In S′(Ψ), every truth assignment can only appear
once. Hence, an element (u, j) ∈ S′(Ψ) is also called the canonical element of u ∈ S(Ψ).

Due to Lemma 8.5 we can give an exact value for |UΨ|:

|UΨ| =
m∑
j=1

2n−kj .

The ratio r that can be exponential in the blind sampling case is now guaranteed to be polynomial in
|Ψ|:

Lemma 8.6

r =
|S′(Ψ)|
|UΨ|

≥ 1

m
.

Proof. As already mentioned above,

|UΨ| =
∑

u∈S(Ψ)

|{j | u satisfies Dj}| ≤ m ·#(Ψ) = m · |S′(Ψ)| .

ut

The characteristic function χ for S′(Ψ) that will be used in MC is

χ(u, j) =

{
1 if j = min{k | u satisfies Dk}
0 otherwise

and can obviously be computed in time O(m · n) by a program Member. Hence, the first condition
for the successful application of the Monte Carlo algorithm is fulfilled.

It remains to fulfill the second condition, i.e. to make sure that elements can be chosen from UΨ

with uniform probability. In other words, we need a uniform generator for UΨ. In contrast to the blind
sampling method, this depends now on the form of Ψ. Short implicants in Ψ have many satisfying
assignments, and therefore these implicants somehow have to be preferred. This can be achieved by
using a random experiment in which an implicant Dj is selected with a probability that depends on its
length kj .

Algorithm UG:

1. choose a j ∈ {1, . . . ,m} with probability 2n−kj/|UΨ||
2. set the variables in Dj so that Dj is satisfied

3. choose a truth assignment for the remaining variables uniformly
at random

4. output j and the resulting truth assignment u

5

Lemma 8.7 Algorithm UG is a uniform generator for UΨ.

Proof. It holds that

Pr[(u, j) ∈ UΨ is selected] = Pr[j ∈ {1, . . . ,m} and u ∈ S(Dj) are selected]

(∗)
=

2n−kj

|UΨ|
· 1

2n−kj

=
1

|U |Ψ
.

In (∗) we used the probability value in (1) of UG and Lemma 8.5. ut

Theorem 8.8 Using S′(Ψ) for Membership and UΨ for UG it follows that Tr(ε, δ) = dm · 3
ε2

ln 2
δ e.

Thus, the algorithm MC(Tr(ε, δ)) is an (ε, δ)-FPRASC for #DNF.

Proof. According to Lemma 8.6 it holds that 1/r ≤ m and according to Lemma 8.7 we have a uniform
generator for UΨ. Using this in Theorem 8.4 gives the claimed result. ut

The algorithm presented in this section is due to Karp, Luby and Madras [KLM89].

8.4 The Markov chain Monte Carlo method

We present now an approach that is based on the Monte Carlo method presented earlier in this chapter.
This approach has recently been used to solve a large number of counting problems. It is called the
Markov chain Monte Carlo method.

We start with some notation from Markov chain theory. A very good introduction to the theory of
Markov chains can be found in the book by Feller [Fel70].

Random walks

A Markov chain M is a discrete-time stochastic process defined over a set of states S in terms of a
matrix P of transition probabilities. The set S is either finite or countably infinite. The transition
probability matrix P = (pi,j) has one row and one column for each state in S. The Markov chain is
in one state at any time, making state transitions at discrete time steps t = 1, 2, The entry pi,j
represents the probability that the next state will be j given that the current state is i. Thus, for all
i, j ∈ S we have 0 ≤ pi,j ≤ 1 and

∑
j pi,j = 1. Such a matrix P is called stochastic.

An important property of a Markov chain is the memorylessness property: the future behavior of
a Markov chain depends only on its current state, and not on how it arrived at this state. We will
denote by Xt the state of the Markov chain at time t. Thus, the sequence {Xt} specifies the history
or the evolution of the Markov chain. The memorylessness property implies that for all t ≥ 1 and all
i0, . . . , it ∈ S,

Pr[Xt = it | X0 = i0, X1 = i1, . . . , Xt−1 = it−1] = Pr[Xt = it | Xt−1 = it−1] = pit−1,it .

A Markov chain is called symmetric if in addition,

Pr[Xt = it | Xt−1 = it−1] = Pr[Xt = it−1 | Xt−1 = it]

for all it−1, it ∈ S. Thus, if a Markov chain is symmetric, then for all j ∈ S,∑
i∈S

pi,j =
∑
i∈S

pj,i = 1 .

6

1/2

1/2 1/2

1/2

1/5

1/5

1/5

1/5

1/5
1/2

1/2

1/2

1/2

Figure 1: A uniform random walk.

That is, P is doubly stochastic.
Another way of representing a Markov chain is to consider a directed graph GP = (V,E) with

V = S, E = {(i, j) | pi,j > 0} and edges (i, j) with weight pi,j . For an example see Figure 1 (edges of
weight 0 are left out). Then a Markov chain X0, X1, . . . can be seen as a random walk on G starting at
node X0, then moving to node X1, and so on. In Figure 1, all outgoing edges of a node have the same
weight. Such a Markov chain is called uniform.

We will use Markov chains as a method to achieve a (near) uniform generation of a sample out of
a sample space S. This would allow us to use the generation process in our Monte Carlo algorithms.
In order to obtain a sample, the Markov chain would usually start at some arbitrary node X0 and
then run for a specified amount of time steps t. Xt will then be considered the random sample that is
given to the Monte Carlo algorithm. To be able to determine the quality of the sample Xt, we have
to determine the probabilities Pr[Xt = i] for all i ∈ V . Or in other words, we have to determine the

probability distribution ~q (t) = (q
(t)
1 , q

(t)
2 , . . . , q

(t)
|V |) so that Pr[Xt = i] = q

(t)
i for all i ∈ V . This will be

our task for the rest of this section.
First of all, for all t ≥ 1 it holds that

~q (t) = ~q(t−1) · P = . . . = ~q(0) · P t

where ~q (0) is the initial probability distribution of the Markov chain.

Let P t = (p
(t)
i,j). A Markov chain M = (S, P) is called irreducible if for all i, j there is a finite t

so that p
(t)
i,j > 0 (i.e. j is reachable from i in a finite amount of time). Obviously, if P is irreducible,

then the corresponding graph GP must be strongly connected. A Markov chain M is called periodic
if there is an initial distribution ~q(0) and a t > 1 such that ~q(0) · P t = ~q(0) and ~q(0) · P t−1 6= ~q(0).
If a Markov chain is irreducible and aperiodic, it is called ergodic. Ergodic Markov chains have the
following important property.

Theorem 8.9 For every ergodic Markov chain M = (S, P) there is a unique vector ~π so that for all
initial probability distributions ~q (0), limt→∞ ~q

(0) ·P t = ~π. ~π is called the stationary distribution ofM.

The word “stationary distribution” comes from the fact that ~π represents a fixpoint w.r.t. multi-
plication with P , i.e., ~π = ~π · P .

The Markov chain in Figure 1 is ergodic. Figure 2 shows a symmetric Markov chain that is not
ergodic. However, simply adding self-loops to the nodes with positive probabilities would convert it
into an ergodic Markov chain. For ergodic Markov chains the following theorem can easily be shown.

Theorem 8.10 LetM = (S, P) be an ergodic Markov chain with graph GP = (V,E). Then

7

1/2

1/21/2

1/2

Figure 2: A symmetric, non-ergodic Markov chain.

(a) IfM is uniform, then ~π = (deg(v1)
2|E| , . . . ,

deg(v|V |)

2|E|).

(b) IfM is symmetric, then ~π = (1
|V | , . . . ,

1
|V |)

Proof. Since M is ergodic, we know from Theorem 8.9 that it must have a unique stationary
distribution ~π. Hence, it just remains to find a distribution that fulfills this property.

(a): Suppose that M is uniform. Then it holds for the ~π given in (a) that for all w ∈ V ,∑
(v,w)∈E

πv · pv,w =
∑

(v,w)∈E

1

deg(v)
· deg(v)

2|E|
=

deg(w)

2|E|
.

Hence, ~π · P = ~π. Since
∑
v πv = 1, π is also a probability distribution and therefore the stationary

distribution we are searching for.

(b): Suppose that M is symmetric. Then it holds for the ~π given in (b) that for all w ∈ V ,∑
(v,w)∈E

πv · pv,w =
1

|V |
∑

(v,w)∈E
pv,w =

1

|V |
.

Obviously, ~π is also a probability distribution and therefore the stationary distribution we are looking
for. ut

From now on we will always assume that all Markov chains are symmetric and ergodic.

Theorem 8.10(b) says that in a sufficiently large amount of time, every node will be visited with
equal probability. This would allow us in principle to construct a uniform generator for V . However,
for this method to be practical, we have to determine how long it takes until one is “sufficiently close”
to a stationary distribution. That is, the problem is to determine a t so that ||~q (0) ·P t−~π|| is sufficiently
close to 0, no matter what ~q (0) is selected. Here, || · || may represent an arbitrary vector norm. The
most commonly used norm is the variation distance that is defined as

δu(t) =
1

2

∑
w∈V
|Pr[P started with u is at w in t steps]− πw| .

The factor 1/2 is used to reflect the fact that∑
w∈V

(Pr[P started with u is at w in t steps]− πw) = 0

i.e., δu(t) only focuses on the positive resp. negative deviation from π. We can prove the following
lemma.

8

Lemma 8.11 LetM = (S, P) be a symmetric and ergodic Markov chain with graph GP = (V,E) and
let W ⊆ V . Then

|W |
|V |
− δu,t ≤ Pr[M started in u is in a node in W after t steps] ≤ |W |

|V |
+ δu,t .

Proof. From Theorem 8.10(b) we know that the stationary distribution of M is π = (1
|V | , . . . ,

1
|V |).

Thus, it holds that

Pr[M started with u is at a node in W in t steps]

=
∑
w∈W

Pr[M started with u is at w in t steps]

=
∑
w∈W

(
1

|V |
+ Pr[M started with u is at w in t steps]− 1

|V |

)

=
|W |
|V |

+
∑
w∈W

(Pr[M started with u is at w in t steps]− πw) .

The last sum is between −δu(t) and +δu(t), as can easily be checked. Hence, the lemma is true. ut

Note that in the statement of Lemma 8.11 the deviation from the value |W |/|V | does not depend
on |W |.

As an example for the speed of convergence, consider the mixing of a deck of cards. The nodes
of the graph represent all possible arrangements of the cards. Two arrangements are connected by
an edge if one can get in one mixing operation from one to the other. Consider each transition to be
of equal probability. Theorem 8.10(b) guarantees in this case that if one would mix the cards for an
infinite amount of time, every arrangement would be of equal probability. The question is, how many
mixing operations have to be performed to be close to the stationary distribution. Using the example
of mixing cards, the following notation was introduced.

Definition 8.12 Let M = (S, P) be an ergodic Markov chain with graph GP = (V,E). Let t(|V |, ε0)
be chosen so that for all u ∈ V and all t ≥ t(|V |, ε0), δu(t) ≤ ε0. The time t(|V |, ε0) is called the mixing
time ofM. If t(|V |, ε0) = poly(log |V |, 1/ε0), thenM is called rapidly mixing.

Note that in the definition of “rapidly mixing” the time has to be polylogarithmic in |V |. This is
due to the fact that a Markov chain is usually performed in a state space that is exponentially large in
the description of the problem. In this case, “polylogarithmic in |V |” would mean “polynomial in the
size of the input”. For example, in a deck of n cards there are |V | = n! possible ways of arranging the
cards, and therefore log |V | = Θ(n log n). This example also shows that one usually cannot completely
write down P . Instead, the Markov chain is usually defined by an algorithm that specifies with which
probability to move from one state to another. In the example with the deck of cards, this would be a
guideline of how to perform a mixing operation.

Since in our stationary distribution all arrangements of cards should have the same probability, it
is important for a rapidly mixing Markov chain to be able to quickly reach any arrangement from any
other arrangement, i.e. the diameter of the corresponding graph G should be small.

Because of Theorem 8.10(b), it is usually easy to design Markov chains whose stationary distribution
is a uniform distribution over all nodes. The hard work usually consists in proving that the Markov
chain is rapidly mixing.

9

8.5 Counting proper node colorings

We consider now the counting problem #COLk given in Definition 8.1(b). Our proof will follow the
arguments in [Jer95, Jer98]. This counting problem has interesting applications in statistical physics.

In the following, an important requirement will be that the degree ∆(G) of the graph G = (V,E) is
small compared to k. In particular, we will demand that k ≥ 2∆(G) + 1. The reason for this is that we
cannot choose k to be too small if we want to select one or more k-colorings, since the decision variant
of the node coloring problem is NP-complete and it would therefore be difficult to determine such a
k-coloring. The reason why we need the condition k ≥ 2∆(G) + 1 has to do with the analysis of the
Markov chain described below to obtain a random node coloring.

In the following, we will set n = |V | and m = |E|. Intuitively, the more edges the graph has,
the harder it is to construct a node coloring. Therefore we consider the following construction: Let
Gm = G and, for all i ∈ {0, . . . ,m− 1}, let Gi be the graph that is obtained by removing an arbitrary
edge from Gi+1. We will consider now not only the counting problem for G, but also the counting
problems for Gm, . . . , G0. The starting point of our approach will be the following facts:

(a) #(G0) = kn, since in a graph with n nodes and no edge there are kn proper k-colorings.

(b) #(Gm) = #(G), which is the value we intend to determine.

(c) S(Gm) ⊆ S(Gm−1) ⊆ . . . ⊆ S(G1) ⊆ S(G0).

From (a) and (b) it follows that

#(G) = #(Gm) =
#(Gm)

#(Gm−1)
· #(Gm−1)

#(Gm−2)
· . . . · #(G1)

#(G0)
·#(G0)︸ ︷︷ ︸

=kn

. (2)

Hence, the counting problem for Gi can be solved if it can be solved for Gi−1. Item (c) is important for
the Markov chain we will describe later. Because of property (2), one can say that the counting problem
is self reducible. In the following, we define ri = #(Gi)/#(Gi−1) for all i. Thus, #(G) = kn ·

∏m
i=1 ri.

As it is shown in the next lemma, the increase in the number of proper colorings caused by the
deletion of a single edge is quite small; it cannot more than double.

Lemma 8.13 For all i ∈ {1, . . . ,m},

1

2
≤ #(Gi)

#(Gi−1)
≤ 1 .

Proof. Let {u,w} ∈ Ei be the edge that is in Gi = (V,Ei) but not in Gi−1. Since S(Gi) ⊆ S(Gi−1),
it holds that #(Gi)/#(Gi−1) ≤ 1.

It remains to show that #(Gi−1) ≤ 2 · #(Gi). Consider the function f that maps every coloring
in S(Gi) to a coloring in S(Gi−1) \ S(Gi) by setting the color of u equal to the color of w. Then
f is surjective, since every coloring C ′ ∈ S(Gi−1) \ S(Gi) has at least one coloring C ∈ S(Gi) with
C ′ = f(C): in C ′, u and w must have the same color and simply selecting any color for u that does
not conflict with a color of a neighbor would result in a proper coloring in S(Gi).

Hence, |S(Gi)| ≥ |S(Gi−1) \ S(Gi)|. So altogether,

|S(Gi−1)| = |S(Gi)|+ |S(Gi−1) \ S(Gi)| ≤ 2|S(Gi)| ,

which concludes the proof. ut

Consider now the following algorithm ColCountk with the two subroutines Markovt and Ratio:

10

Algorithm Markovt(G):

C = GreedyCol(G)
for j = 1 to t do

choose a random u ∈ V and color c ∈ {1, . . . , k}
C ′ = C with the color of u replaced by c
if C ′ is a proper coloring then C = C ′

output C

Algorithm Ratio(i):

for τ = 1 to T do
C = Markovt(Gi−1)
if C ∈ S(Gi)

then X
(i)
τ = 1

else X
(i)
τ = 0

output Ri = 1
T

∑T
τ=1X

(i)
τ

Algorithm ColCountk(G, ε):

m = |E|; n = |V |
Gm = G
for i = m downto 1 do

Gi−1 = Gi without some arbitrarily chosen edge
Ri = Ratio(i)

Z =
∏m
i=1Ri

output kn · Z

In these algorithms two values are not determined: the t in Markovt and the T in Ratio. We
will select expressions for these that allow ColCount to be an FPRASC for #COLk.

The subroutine Markov describes a Markov chain on a graph G(G) whose node set is the set of all
proper node colorings for G. The Markov chain begins with an arbitrary valid coloring C0(G) (which
can be obtained by greedily assigning an available color to each node, one after the other). The edges
and edge weights are determined by the rule in Markovt to choose a random node and a random color
for that node.
G(G) is connected since our rule to create a new coloring certainly allows us to turn any proper

coloring C into a proper coloring C ′ in a finite number of recoloring steps (note that k ≥ 2∆(G) + 1).
Or in other words, the corresponding Markov chain is irreducible. Furthermore, the probability to
move from coloring C to coloring C ′ is equal to the probability to move from C ′ to C. Hence, the
Markov chain is also symmetric. Since the new color c of a node v can also be its old color. Hence, the
Markov chain has self-loops and is therefore aperiodic. So altogether the Markov chain corresponding
to Markov is symmetric and ergodic, which together with Theorem 8.10(b) results in the following
lemma.

Lemma 8.14 For t→∞, Markovt(G) generates a proper node coloring for G with at most k colors
uniformly at random.

Thus, we can use Markovt(G) as a uniform generator if t is sufficiently large. For an arbitrary
ε0 ∈ (0, 1) let t = t(G, ε0) be the mixing time of the Markov chain, i.e. the time point at which the
Markov chain can be stopped, since for all t′ ≥ t,

1

2

∑
C∈S(G)

∣∣∣∣Pr[Marovt′(G) outputs C]− 1

#G

∣∣∣∣ = δC0(G)(t
′) ≤ ε0 .

Because of the ε0 we also call Markovt a near-uniform generator. Jerrum showed the Markov chain
corresponding to Markovt is rapidly mixing.

11

Theorem 8.15 ([Jer95, Jer98]) Let G = (V,E) be a graph with 2∆(G) + 1 ≤ k. Then the mixing
time of Markovt is

t(G, ε0) =

⌈
k −∆(G)

k − 2∆(G)
· |V | · ln

(|V |
ε0

)⌉
.

How can a near-uniform generator for the set of proper colorings for G help us? Note that in the
Monte Carlo method we need a uniform generator that can generate samples out of a universe of known
size and not just to obtain random samples out of some unknown universe. This is the place where we
can use property (2):

We know the size of #(G0), and therefore Markovt can help us to get a very good approximation
of #(G1). Once we know #(G1) sufficiently well, we can again use Markovt to approximate #(G2)
sufficiently well, and so on, until we found a good approximation for #(Gm) = #(G). Since due to
Lemma 8.13 ri = #(Gi)/#(Gi−1) ≥ 1/2 for all i, the ratio of the set whose size we intend to determine
and the set whose size we know is always sufficiently large so that (like in the importance sampling)
this strategy should work.

In order to prove that we get a good approximation for #(G), we have to examine the Ri’s and Z.
Let us choose

T =
74m

ε2
and ε0 =

ε

6m
.

Using this choice for ε0 in the expression for t above, we get

t =

⌈
k −∆(G)

k − 2∆(G)
· n · ln

(
6nm

ε

)⌉
.

Lemma 8.16

(a) For all i ∈ {1, . . . ,m}, (
1− ε

3m

)
· ri ≤ E[Ri] ≤

(
1 +

ε

3m

)
· ri .

(b) (
1− ε

2

)
#(G) ≤ kn · E[Z] ≤

(
1 +

ε

2

)
#(G) .

Proof.
(a): It holds that E[Ri] = E[X

(i)
τ] for any τ . From Lemma 8.11 it follows that ri−ε0 ≤ E[X

(i)
τ] ≤ ri+ε0.

Since ri ≥ 1/2, the statement follows.

(b): With kn ·
∏m
i=1 ri = #(G) and (a) it follows that(

1− ε

3m

)m
·#(G) ≤ kn · E[Z] ≤

(
1 +

ε

3m

)m
·#(G) .

Moreover, (
1− ε

3m

)m
≥ 1− ε

2
and

(
1 +

ε

3m

)m
≤ 1 +

ε

2
,

which proves (b). ut

We can bound the deviation from the expectations above with the help of the variance.

Lemma 8.17

12

(a) For all i ∈ {1, . . . ,m}, V[Ri]
E[Ri]2

≤ ε2

37m .

(b) V[Z]
E[Z]2

≤ ε2

36 .

Proof. (a): Since all X
(i)
τ have the same distribution,

V[Ri] = V

[
1

T

T∑
τ=1

X(i)
τ

]
=

1

T 2

T∑
τ=1

V[X(i)
τ] =

1

T
·V[X

(i)
1] .

X
(i)
1 is a binary random variable, and therefore V[X

(i)
1] = E[X

(i)
1] · (1−E[X

(i)
1]). With E[Ri] = E[X

(i)
1]

and E[Ri] ≥ 1/3 we get
V[Ri]

E[Ri]2
=

1

T

(
1

E[Ri]
− 1

)
≤ 2

T
=

ε2

37m
.

(b): One can show that

V[Z]

E[Z]2
= −1 +

m∏
i=1

(
1 +

V[Ri]

E[Ri]2

)
(a)

≤ −1 +
m∏
i=1

(
1 +

ε2

37m

)
=

(
1 +

ε2

37m

)m
− 1 ≤ ε2

36
.

ut

Now we can use the Chebychev inequality to determine the quality of ColCountk.

Theorem 8.18 For every ε ∈ (0, 1), ColCountk runs in time O((nmε)2 ln(nmε)) and achieves

Pr[(1− ε) ·#(G) ≤ ColCountk(G, ε) ≤ (1 + ε) ·#(G)] ≥ 3

4
.

Proof. The runtime bound is straight forward.
It holds that CountColk(G, ε) = kn ·Z. Lemma 8.17(b) implies that σ[Z] ≤ ε

6 ·E[Z]. This together
with Lemma 8.16(b) and the Chebychev inequality implies:

Pr[|Z − E[Z]| ≥ 2 · σ[Z]] ≤ 1

4

⇒ Pr[|Z − E[Z]| ≤ 2 · σ[Z]] ≥ 3

4

⇒ Pr[E[Z]− 2σ[Z] ≤ Z ≤ E[Z] + 2σ[Z]] ≥ 3

4

⇒ Pr

[(
1− ε

3

)(
1− ε

2

)
·#(G) ≤ kn · Z ≤

(
1 +

ε

3

)(
1 +

ε

2

)
·#(G)

]
≥ 3

4
(∗)⇒ Pr[(1− ε) ·#(G) ≤ kn · Z ≤ (1 + ε) ·#(G)] ≥ 3

4
.

In (∗) we used the fact that 1 − ε ≤ (1 − ε/2)(1 − ε/3) and that 1 + ε ≥ (1 + ε/2)(1 + ε/3) for all
ε ∈ [0, 1]. ut

Hence, ColCountk is a fully polynomial randomized approximation scheme (FPRASC) for #COLk
and therefore can be transformed according to Theorem 8.3 into an (ε, δ)-FPRASC.

13

A Markov chain that mixes faster than the Markov chain used in our algorithm can be found in
[DG98]. Also there the change of a color is very easy: Instead of choosing a node, an edge {u,w} ∈ E
is selected. If A = {(c1, c2) | c1 is an available color at u and c2 is an available color for w}, then a pair
is selected from A uniformly at random and applied to u and w. This Markov chain is even ergodic for
k ≥ ∆(G) + 1.

8.6 Further applications of the Markov chain Monte Carlo method

A major breakthrough in the application of Markov chain Monte Carlo methods for approximation
problems was the algorithm by Sinclair [Sin93] that provides an FPRASC for #Matching – the
problem of determining the number of matchings in a graph. Sinclair was able to show for a Markov
chain that transforms one matching into another that it rapidly mixes. The basic approach of his
algorithm is similar to the approach we presented for #COLk. Detailed descriptions of the Markov
chain and its analysis can also be found in [JS96] and [MR95].

Further applications of the Markov chain Monte Carlo method have been

• determining the number of feasible knapsack fillings [JS96, MS99],

• determining the number of Hamiltonian cycles in dense graphs (i.e. graphs with many edges)
[DFJ98], and

• determining the number of independent sets in sparse graphs (i.e. graphs with few edges) [DFJ99]

For all of these problems, FPRASCs are known.

References

[Bol98] B. Bollobas. Modern Graph Theory. Springer, New York, 1998.

[DFJ98] M. Dyer, A. Frieze, and M. Jerrum. Approximately counting Hamiltonian paths and cycles in dense
graphs. SIAM Journal on Computing, 27:1262–1272, 1998.

[DFJ99] M. Dyer, A. Frieze, and M. Jerrum. On counting independent sets in sparse graphs. In Proc. of the
40th IEEE Symp. on Foundations of Computer Science (FOCS), pages 210–217, 1999.

[DG98] M. Dyer and C. Greenhill. A more rapidly mixing markov chain for graph colorings. Random Structures
and Algorithms, 13:285–317, 1998.

[Fel70] W. Feller. An Introduction to Probability Theory and Applications. Wiley, New York, 1970.

[Jer95] M. Jerrum. A very simple algorithm for estimating the number of k-colorings of a low-degree graph.
Random Structures and Algorithms, 7:157–165, 1995.

[Jer98] M. Jerrum. Mathematical foundations of the Markov chain Monte Carlo method. In Probabilistic
Methods for Algorithmic Discrete Mathematics, volume 16 of Algorithms and Combinatorics, pages
116–165. Springer, 1998.

[JS96] M. Jerrum and A. Sinclair. The markov chain monte-carlo method: An approach to approximate
counting and integration. In D.S. Hochbaum, editor, Approximation Algorithms for NP-Hard Problems,
pages 482–520. PWS, 1996.

[KLM89] R.M. Karp, M. Luby, and N. Madras. Monte-carlo approximation algorithms for enumeration problems.
Journal of Algorithms, 10:429–448, 1989.

[MR95] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press, Cambridge, 1995.

[MS99] B. Morris and A. Sinclair. Random walks on truncated cubes and sampling 0-1 knapsack solutions. In
Proc. of the 40th IEEE Symp. on Foundations of Computer Science (FOCS), pages 230–240, 1999.

14

[Sin93] A. Sinclair. Algorithms for Random Generation & Counting: A Markov Chain Approach. Birkhäuser,
Boston, 1993.

[Wel93] D. Welsh. Complexity: Knots, Colourings and Counting. Cambridge University Press, 1993.

15

