Premaster Course Algorithms 1

Chapter 4: Dyanamic Programming and Greedy Algorithms

Christian Scheideler

$$
\text { SS } 2018
$$

Overview

- Dynamic Programming
- Greedy Algorithms

Dynamic Programming

- Typically used for optimization problems
- Similar to Divide\&Conquer (cut problem into simpler problems that can be solved recursively)

General approach:

1. Set up a recursive equation for the problem

- initial case
- recursion
- optimal value

2. Formulate a dynamic program

Important: compute OPT(i,j,...) values in an order so that all values in the recursion have already been computed!

Dynamic Programming

Example:

Rod-cutting Problem

Rod-cutting problem: Given a rod of length n inches and a table of prices p_{i} for $i=1,2, \ldots, n$, for rods of length i, determine the maximum revenue OPT obtainable by cutting up the rod and selling the pieces.

Note that if the price for a rod of length n is large enough, an optimal solution may require no cutting at all.

Rod-cutting Problem

OPT(n): optimal revenue for rod of length n

- Initial case: OPT(0)=0
- Recursion: OPT(n)=max 1isisn $\left(p_{i}+O P T(n-i)\right)$
- Optimal value: OPT=OPT(n)

Table of values:

Dependencies:
So compute from left to right.

Rod-cutting Problem

OPT(n): optimal revenue for rod of length n

- Initial case: OPT(0)=0
- Recursion: OPT(n)= $\max _{1 \leq i \leq n}\left(p_{i}+O P T(n-i)\right)$
- Optimal value: OPT=OPT(n)

Dynamic program:

1. $\operatorname{OPT}(0):=0$
2. for $\mathrm{j}:=1$ to n do
3. OPT(j):=-
4. for $\mathrm{i}:=1$ to n do
5. OPT(j):=max(OPT(j),p[i]+OPT(j-i))

6. return $\operatorname{OPT}(n)$

Matrix-chain Multiplication

Matrix-chain multiplication problem: Given matrices A_{1}, \ldots, A_{n} and $p_{0}, \ldots, p_{n} \in \mathbb{N}$, where A_{i} is a $p_{i-1} \times p_{i}$-matrix, compute the minimal number of multiplications to compute $\mathrm{A}_{1} \cdot \ldots \cdot \mathrm{~A}_{\mathrm{n}}$.

Observation:

- Let $A_{i ., j}=A_{i} \cdot \ldots \cdot A_{j}$
- The matrix product $A_{i ., k} \cdot A_{k+1 . . j}$ takes $p_{i-1} \cdot p_{k} \cdot p_{j}$ many multiplications (using the standard matrix multiplication method)

Matrix-chain Multiplication

- $m[i, j]:$ minimal number of multiplications to compute $A_{i . . j}$

Initial case:

$$
m[i, i]=0 \text { for all } i \in\{1, \ldots, n\} .
$$

Recursion:

$$
m[i, j]=\min _{i \leq k<j} m[i, k]+m[k+1, j]+p_{i-1} \cdot p_{k} \cdot p_{j} \text { für alle } i<j
$$

Optimal Value:

$$
m[1, n]
$$

Dynamic program:

- First, execute initial case
- Compute $m[i, j]$ for all $i<j$ with $|j-i|=d$, starting with $d=1$

Longest Common Subsequence

Definition: Let $\mathrm{X}=\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{m}}\right)$ and $\mathrm{Y}=\left(\mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{n}}\right)$ be two sequences, where $x_{i}, y_{i} \in A$ for some finite alphabet A. Then we call Y a subsequence of X if there are indices
$\mathrm{i}_{1}<\ldots<\mathrm{i}_{n}$ with $\mathrm{x}_{\mathrm{ij}}=\mathrm{y}_{\mathrm{j}}$ for all $\mathrm{j}=1, \ldots, \mathrm{n}$.
Example:
Sequence Y B C A C

Longest Common Subsequence

Longest common subsequence problem: Given two sequences X and Y, find the longest common subsequence of X and Y.
$\mathrm{c}[\mathrm{i}, \mathrm{j}]$: length of longest common subsequence of ($\mathrm{X}_{1}, \ldots, \mathrm{x}_{\mathrm{i}}$) and ($\mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{j}}$)

- Initial case: $c[i, j]=0$ if $i=0$ or $j=0$
- Recursion:

$$
c[i, j]= \begin{cases}c[i-1, j-1]+1 & \text { if } i, j>0 \text { and } x_{i}=y_{j} \\ \max (c[i, j-1], c[i-1, j]) & \text { if } i, j>0 \text { and } x_{i} \neq y_{j}\end{cases}
$$

- Optimal value: c[m,n]

Longest Common Subsequence

LCS-Length (X, Y)

1. $\mathrm{m}:=\mathrm{X}$. length
2. $\mathrm{n}:=\mathrm{Y}$. length
3. new array $\mathrm{C}[0, . ., \mathrm{m}][0, . ., \mathrm{n}]$
4. for $\mathrm{i}:=0$ to m do $\mathrm{C}[\mathrm{i}][0]:=0$
5. for $\mathrm{j}:=0$ to n do $\mathrm{C}[0][\mathrm{j}]:=0$
6. for $\mathrm{i}:=1$ to m do
7. for $\mathrm{j}:=1$ to n do
8.
9.
10.

if $X[i]=Y[j]$ then
$C[i, j]:=C[i-1, j-1]+1$
else
11. $C[i, j]:=\max (C[i, j-1], C[i-1, j])$
12. return C

Optimal Binary Search Tree

Optimal binary search tree problem: Given keys $k_{1}<\ldots<k_{n}$ with access probabilities $p_{1}, \ldots, p_{n} \in[0,1]$ so that $\Sigma_{i=1} p_{i}=1$, find a binary search tree T with minimal expected search time, i.e., $\Sigma_{i=1} p_{i}$ $\cdot\left(\right.$ depth $\left._{T}\left(\mathrm{k}_{\mathrm{i}}\right)+1\right)$ is minimal $\left(\right.$ depth $_{T}(\mathrm{k})$: depth of node with key k in T , depth of the root of T is 0).

Optimal Binary Search Tree

$m[i, j]$: minimal expected search time for binary tree containing k_{i} to k_{j}

Initial case:

- $m[i, i-1]=0$ for all $i \in\{1, \ldots, n\}$
- $m[i, i]=p_{i}$ for all $i \in\{1, \ldots, n\}$

Recursion:
$m[i, j]=\min _{i \leq k \leq j} m[i, k-1]+m[k+1, j]+\sum_{\mid=i} p_{l}$ for all $i<j$
Optimal value:
$\mathrm{m}[1, \mathrm{n}]$
Dynamic program:

- First compute initial case
- Compute $m[i, j]$ for all $i<j$ with $|j-i|=d$, starting with $d=1$
- At the end, output m[1,n]

Overview

- Dynamic Programming
- Greedy Algorithms

Greedy Algorithms

General approach:

- Arrange the input into a sequence of small pieces that are considered one after the other
- For each piece, make an irreversible decision in a Greedy fashion (based on the given objective function) without taking the remaining pieces into account

Often, Greedy algorithms produce non-optimal solutions, so one has to be careful about when to use Greedy approaches!

Interval Scheduling

Interval scheduling problem: given a resource (room, computer,...) and a set of requests to use that resource for a certain time interval, schedule as many requests as possible.

Interval Scheduling

Interval scheduling problem: given a resource (room, computer,...) and a set of requests to use that resource for a certain time interval, schedule as many requests as possible.

Interval Scheduling

Strategy 1: consider requests in order in which they start

Interval Scheduling

Strategy 1: consider requests in order in which they start

Not optimal!

Interval Scheduling

Strategy 2: consider requests in increasing order of length

Not optimal!

Interval Scheduling

Strategy 3: consider requests in order in which they finish

Always produces optimal result!

Huffman Trees

Minimum code length problem: Given a text, we want to find a code for its letters that minimizes the code length of the text.

Problem: Code is not allowed to be ambiguous, i.e., there should be a unique way of recovering the text from the code.

Unique coding strategy: prefix coding
Definition: A prefix code for an alphabet Σ is a function γ that assigns to each letter $x \in \Sigma$ a bit string so that for any $x, y \in \Sigma, \gamma(x)$ is not a prefix of $\gamma(\mathrm{y})$.

Example:

$\mathrm{X} \in \Sigma$	0	1	2	3	4	5	6	7	8	9
$\gamma(\mathrm{x})$	00	0100	0110	0111	1001	1010	1011	1101	1110	1111

Huffman Trees

Definition: The frequency $f[x]$ of a letter $x \in \Sigma$ is the fraction of letters in the given text that is equal to x.

Example:

- $\Sigma=\{0,1,2\}$
- text =„0010022001"
(10 letters)
- $f[0]=3 / 5$
- $f[1]=1 / 5$
- $f[2]=1 / 5$

Huffman Trees

Definition: The code length of a text T of n letters w.r.t. code γ is defined as

$$
B L(T)=\Sigma_{x \in \Sigma} n \cdot f[x] \cdot|\gamma(x)|
$$

Example:

- $\quad \Sigma=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$
- $\gamma(a)=0 ; \gamma(b)=101 ; \gamma(c)=110 ; \gamma(d)=111$
- T = „aacdaabb"
- code length $=16$

Optimal prefix code problem: Given an alphabet Σ and a frequency function $f: \Sigma \rightarrow[0,1]$, find a prefix code that minimizes

$$
\operatorname{ABL}(\gamma)=\Sigma_{x \in \Sigma} f[x] \cdot|\gamma(x)|
$$

Huffman Trees

Binary trees and prefix codes:

$x \in \Sigma$	$\gamma(x)$
a	00
b	1
c	011
d	010

Huffman Trees

Binary trees and prefix codes:

$x \in \Sigma$	$\gamma(x)$
a	11
b	01
c	00
d	10

Huffman Trees

Definition: The depth of a tree node is the length of its path from the root.

Huffman Trees

Idea of Huffman‘s algorithm:
Repeatedly do the following until only one letter is left in Σ :

- Pick the two letters $x, y \in \Sigma$ of lowest frequencies and connect them to a tree with root z. Remove x, y from Σ and add instead z to Σ with frequency $\mathrm{f}[\mathrm{z}]=\mathrm{f}[\mathrm{x}]+\mathrm{f}[\mathrm{y}]$.

Huffman Trees

Example:

$x \in \Sigma$	$f[x]$
a	23%
b	12%
c	55%
d	10%

Greedy Algorithms

There is a general approach:

Whenever an optimization problem can be modeled as a matroid, it can be solved by a Greedy algorithm.

Next Lecture

Topic: Basic graph algorithms

