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Overview

• Dynamic Programming
• Greedy Algorithms
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Dynamic Programming
• Typically used for optimization problems
• Similar to Divide&Conquer (cut problem into simpler 

problems that can be solved recursively)

General approach:
1. Set up a recursive equation for the problem

- initial case (i.e., OPT(i,0)=OPT(0,j)=0)
- recursion (i.e., OPT(i,j)=…)
- optimal value (i.e., OPT = OPT(n,W) )

2. Formulate a dynamic program
Important: compute OPT(i,j,..) values in an order so 
that all values in the recursion have already been
computed!
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Dynamic Programming
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Example: 
OPT(i,j) = 

0 i=0 or j=0

OPT(i-1,j-1)+OPT(i,j-1)+c otherwise

i

j

column-wise
computation
of OPT(i,j)



Rod-cutting Problem
Rod-cutting problem: Given a rod of length n inches
and a table of prices pi for i=1,2,…,n, for rods of 
length i, determine the maximum revenue OPT
obtainable by cutting up the rod and selling the
pieces.

Note that if the price for a rod of length n is large 
enough, an optimal solution may require no cutting
at all.
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Rod-cutting Problem
OPT(n): optimal revenue for rod of length n
• Initial case: OPT(0)=0
• Recursion: OPT(n)=max1≤i≤n (pi + OPT(n-i))
• Optimal value: OPT=OPT(n)

Table of values:

Dependencies:
So compute from left to right. 
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OPT(0) OPT(1) … OPT(n)



Rod-cutting Problem
OPT(n): optimal revenue for rod of length n
• Initial case: OPT(0)=0
• Recursion: OPT(n)=max1≤i≤n (pi + OPT(n-i))
• Optimal value: OPT=OPT(n)

Dynamic program:
1. OPT(0):=0
2. for j:=1 to n do
3. OPT(j):=-∞
4. for i:=1 to n do
5. OPT(j):=max(OPT(j),p[i]+OPT(j-i))
6. return OPT(n)
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Matrix-chain Multiplication
Matrix-chain multiplication problem: Given matrices

A1,…,An and p0,…,pn∈ℕ, where Ai is a pi-1×pi-matrix, 
compute the minimal number of multiplications to
compute A1⋅…⋅An.

Observation: 
• Let Ai..j = Ai⋅…⋅Aj

• The matrix product Ai..k ⋅ Ak+1..j takes pi-1⋅pk⋅pj many
multiplications (using the standard matrix multiplication
method)
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Matrix-chain Multiplication
• m[i,j]: minimal number of multiplications to compute Ai..j

Initial case: 
m[i,i]=0 for all i∈{1,…,n}.

Recursion:
m[i,j] = mini≤k<j m[i,k] + m[k+1,j] + pi-1⋅pk⋅pj für alle i<j

Optimal Value: 
m[1,n]

Dynamic program:
• First, execute initial case
• Compute m[i,j] for all i<j with |j-i|=d, starting with d=1
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Longest Common Subsequence
Definition: Let X=(x1,...,xm) and Y=(y1,...,yn) 
be two sequences, where xi, yj∈A for some
finite alphabet A. Then we call Y a 
subsequence of X if there are indices
i1<...<in with xij = yj for all j = 1,...,n. 

Example:
Sequence Y
Sequence X
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Longest Common Subsequence
Longest common subsequence problem: Given two
sequences X and Y, find the longest common
subsequence of X and Y.

c[i,j]: length of longest common subsequence of 
(x1,...,xi) and (y1,...,yj)
• Initial case: c[i,j]=0 if i=0 or j=0
• Recursion:

c[i,j] = 

• Optimal value: c[m,n]
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c[i-1,j-1]+1 if i,j>0 and xi=yj

max(c[i,j-1],c[i-1,j]) if i,j>0 and xi≠yj



Longest Common Subsequence
LCS-Length(X, Y)
1. m:=X.length
2. n:=Y.length
3. new array C[0,..,m][0,..,n]
4. for i:=0 to m do C[i][0]:=0
5. for j:=0 to n do C[0][j]:=0
6. for i:=1 to m do
7. for j:=1 to n do
8. if X[i]=Y[j] then
9. C[i,j]:=C[i-1,j-1]+1
10. else
11. C[i,j]:=max(C[i,j-1],C[i-1,j])
12. return C
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Optimal Binary Search Tree
Optimal binary search tree problem: Given keys

k1<…<kn with access probabilities p1,…,pn∈[0,1]
so that Σi=1 pi = 1, find a binary search tree T with
minimal expected search time, i.e., Σi=1 pi
⋅(depthT(ki)+1) is minimal (depthT(k): depth of node
with key k in T, depth of the root of T is 0).
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Optimal Binary Search Tree
m[i,j]: minimal expected search time for binary tree containing ki
to kj

Initial case: 
• m[i,i-1]=0 for all i∈{1,…,n}
• m[i,i]=pi for all i∈{1,…,n}
Recursion:

m[i,j] = mini≤k≤j m[i,k-1] + m[k+1,j] + Σl=i pl for all i<j
Optimal value: 

m[1,n]
Dynamic program:
• First compute initial case
• Compute m[i,j] for all i<j with |j-i|=d, starting with d=1
• At the end, output m[1,n]
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Overview

• Dynamic Programming
• Greedy Algorithms
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Greedy Algorithms
General approach:
• Arrange the input into a sequence of small pieces

that are considered one after the other
• For each piece, make an irreversible decision in a 

Greedy fashion (based on the given objective
function) without taking the remaining pieces into
account

Often, Greedy algorithms produce non-optimal 
solutions, so one has to be careful about when to
use Greedy approaches!
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Interval Scheduling
Interval scheduling problem: given a resource
(room, computer,…) and a set of requests to
use that resource for a certain time interval, 
schedule as many requests as possible.

30.04.2018 Chapter 4 17



Interval Scheduling
Interval scheduling problem: given a resource
(room, computer,…) and a set of requests to
use that resource for a certain time interval, 
schedule as many requests as possible.
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Interval Scheduling

Strategy 1: consider requests in order in 
which they start
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Interval Scheduling

Strategy 1: consider requests in order in 
which they start
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Not optimal!



Interval Scheduling

Strategy 2: consider requests in increasing
order of length
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Not optimal!



Interval Scheduling

Strategy 3: consider requests in order in 
which they finish

Always produces optimal result!

30.04.2018 Chapter 4 22



Huffman Trees
Minimum code length problem: Given a text, we want to find a 
code for its letters that minimizes the code length of the text.

Problem: Code is not allowed to be ambiguous, i.e., there should
be a unique way of recovering the text from the code.

Unique coding strategy: prefix coding
Definition: A prefix code for an alphabet Σ is a function γ that
assigns to each letter x∈Σ a bit string so that for any x,y∈Σ, γ(x)
is not a prefix of γ(y).

Example:
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x∈Σ 0 1 2 3 4 5 6 7 8 9
γ(x) 00 0100 0110 0111 1001 1010 1011 1101 1110 1111



Huffman Trees
Definition: The frequency f[x] of a letter x∈Σ is
the fraction of letters in the given text that is
equal to x. 

Example:
• Σ = {0,1,2}
• text =„0010022001“      (10 letters)
• f[0] = 3/5 
• f[1] = 1/5
• f[2] = 1/5 
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Huffman Trees
Definition: The code length of a text T of n letters w.r.t. code γ is
defined as

BL(T) = Σx∈Σ n⋅f[x]⋅|γ(x)|

Example:
• Σ = {a,b,c,d}
• γ(a) = 0; γ(b) =101; γ(c)= 110; γ(d)=111
• T = „aacdaabb“
• code length = 16

Optimal prefix code problem: Given an alphabet Σ and a 
frequency function f:Σ→[0,1], find a prefix code that minimizes

ABL(γ) = Σx∈Σ f[x]⋅|γ(x)|
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Huffman Trees

Binary trees and prefix codes:
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1 x∈Σ γ(x)

a 00

b 1

c 011

d 010

1



Huffman Trees

Binary trees and prefix codes:
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x∈Σ γ(x)

a 11

b 01

c 00

d 10
c b d a

0

0 0

1

1 1



Huffman Trees
Definition: The depth of a tree node is the length of
its path from the root.
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depth(c) = 3

ABL(T) = Σx∈Σ f[x]⋅depthT(x)



Huffman Trees
Idea of Huffman‘s algorithm:
Repeatedly do the following until only one letter is
left in Σ:
• Pick the two letters x,y∈Σ of lowest frequencies

and connect them to a tree with root z. Remove 
x,y from Σ and add instead z to Σ with frequency
f[z]=f[x]+f[y].
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z
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Huffman Trees

Example:
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x∈Σ f[x]
a 23%
b 12%
c 55%
d 10%

23%

10% 12%

22%

45% 55%

100%



Greedy Algorithms

There is a general approach:

Whenever an optimization problem can be
modeled as a matroid, it can be solved by a 
Greedy algorithm.
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Next Lecture

Topic: Basic graph algorithms
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