
Premaster Course Algorithms 1

Chapter 4: Dyanamic
Programming and Greedy

Algorithms

Christian Scheideler
SS 2018

Overview

• Dynamic Programming
• Greedy Algorithms

30.04.2018 Chapter 4 2

Dynamic Programming
• Typically used for optimization problems
• Similar to Divide&Conquer (cut problem into simpler

problems that can be solved recursively)

General approach:
1. Set up a recursive equation for the problem

- initial case (i.e., OPT(i,0)=OPT(0,j)=0)
- recursion (i.e., OPT(i,j)=…)
- optimal value (i.e., OPT = OPT(n,W))

2. Formulate a dynamic program
Important: compute OPT(i,j,..) values in an order so
that all values in the recursion have already been
computed!

30.04.2018 Chapter 4 3

Dynamic Programming

0
0
0
0
0
0
0
0 0 0 0 0 0 0 0 0 0

30.04.2018 Chapter 4 4

Example:
OPT(i,j) =

0 i=0 or j=0

OPT(i-1,j-1)+OPT(i,j-1)+c otherwise

i

j

column-wise
computation
of OPT(i,j)

Rod-cutting Problem
Rod-cutting problem: Given a rod of length n inches
and a table of prices pi for i=1,2,…,n, for rods of
length i, determine the maximum revenue OPT
obtainable by cutting up the rod and selling the
pieces.

Note that if the price for a rod of length n is large
enough, an optimal solution may require no cutting
at all.

30.04.2018 Chapter 4 5

Rod-cutting Problem
OPT(n): optimal revenue for rod of length n
• Initial case: OPT(0)=0
• Recursion: OPT(n)=max1≤i≤n (pi + OPT(n-i))
• Optimal value: OPT=OPT(n)

Table of values:

Dependencies:
So compute from left to right.

30.04.2018 Chapter 4 6

OPT(0) OPT(1) … OPT(n)

Rod-cutting Problem
OPT(n): optimal revenue for rod of length n
• Initial case: OPT(0)=0
• Recursion: OPT(n)=max1≤i≤n (pi + OPT(n-i))
• Optimal value: OPT=OPT(n)

Dynamic program:
1. OPT(0):=0
2. for j:=1 to n do
3. OPT(j):=-∞
4. for i:=1 to n do
5. OPT(j):=max(OPT(j),p[i]+OPT(j-i))
6. return OPT(n)

30.04.2018 Chapter 4 7

Matrix-chain Multiplication
Matrix-chain multiplication problem: Given matrices

A1,…,An and p0,…,pn∈ℕ, where Ai is a pi-1×pi-matrix,
compute the minimal number of multiplications to
compute A1⋅…⋅An.

Observation:
• Let Ai..j = Ai⋅…⋅Aj

• The matrix product Ai..k ⋅ Ak+1..j takes pi-1⋅pk⋅pj many
multiplications (using the standard matrix multiplication
method)

30.04.2018 Chapter 4 8

Matrix-chain Multiplication
• m[i,j]: minimal number of multiplications to compute Ai..j

Initial case:
m[i,i]=0 for all i∈{1,…,n}.

Recursion:
m[i,j] = mini≤k<j m[i,k] + m[k+1,j] + pi-1⋅pk⋅pj für alle i<j

Optimal Value:
m[1,n]

Dynamic program:
• First, execute initial case
• Compute m[i,j] for all i<j with |j-i|=d, starting with d=1

30.04.2018 Chapter 4 9

Longest Common Subsequence
Definition: Let X=(x1,...,xm) and Y=(y1,...,yn)
be two sequences, where xi, yj∈A for some
finite alphabet A. Then we call Y a
subsequence of X if there are indices
i1<...<in with xij = yj for all j = 1,...,n.

Example:
Sequence Y
Sequence X

30.04.2018 Chapter 4 10

B C A C

A B A C A B C

Longest Common Subsequence
Longest common subsequence problem: Given two
sequences X and Y, find the longest common
subsequence of X and Y.

c[i,j]: length of longest common subsequence of
(x1,...,xi) and (y1,...,yj)
• Initial case: c[i,j]=0 if i=0 or j=0
• Recursion:

c[i,j] =

• Optimal value: c[m,n]

30.04.2018 Chapter 4 11

c[i-1,j-1]+1 if i,j>0 and xi=yj

max(c[i,j-1],c[i-1,j]) if i,j>0 and xi≠yj

Longest Common Subsequence
LCS-Length(X, Y)
1. m:=X.length
2. n:=Y.length
3. new array C[0,..,m][0,..,n]
4. for i:=0 to m do C[i][0]:=0
5. for j:=0 to n do C[0][j]:=0
6. for i:=1 to m do
7. for j:=1 to n do
8. if X[i]=Y[j] then
9. C[i,j]:=C[i-1,j-1]+1
10. else
11. C[i,j]:=max(C[i,j-1],C[i-1,j])
12. return C

30.04.2018 Chapter 4 12

Optimal Binary Search Tree
Optimal binary search tree problem: Given keys

k1<…<kn with access probabilities p1,…,pn∈[0,1]
so that Σi=1 pi = 1, find a binary search tree T with
minimal expected search time, i.e., Σi=1 pi
⋅(depthT(ki)+1) is minimal (depthT(k): depth of node
with key k in T, depth of the root of T is 0).

30.04.2018 Chapter 4 13

Optimal Binary Search Tree
m[i,j]: minimal expected search time for binary tree containing ki
to kj

Initial case:
• m[i,i-1]=0 for all i∈{1,…,n}
• m[i,i]=pi for all i∈{1,…,n}
Recursion:

m[i,j] = mini≤k≤j m[i,k-1] + m[k+1,j] + Σl=i pl for all i<j
Optimal value:

m[1,n]
Dynamic program:
• First compute initial case
• Compute m[i,j] for all i<j with |j-i|=d, starting with d=1
• At the end, output m[1,n]

30.04.2018 Chapter 4 14

Overview

• Dynamic Programming
• Greedy Algorithms

30.04.2018 Chapter 4 15

Greedy Algorithms
General approach:
• Arrange the input into a sequence of small pieces

that are considered one after the other
• For each piece, make an irreversible decision in a

Greedy fashion (based on the given objective
function) without taking the remaining pieces into
account

Often, Greedy algorithms produce non-optimal
solutions, so one has to be careful about when to
use Greedy approaches!

30.04.2018 Chapter 4 16

Interval Scheduling
Interval scheduling problem: given a resource
(room, computer,…) and a set of requests to
use that resource for a certain time interval,
schedule as many requests as possible.

30.04.2018 Chapter 4 17

Interval Scheduling
Interval scheduling problem: given a resource
(room, computer,…) and a set of requests to
use that resource for a certain time interval,
schedule as many requests as possible.

30.04.2018 Chapter 4 18

Interval Scheduling

Strategy 1: consider requests in order in
which they start

30.04.2018 Chapter 4 19

Interval Scheduling

Strategy 1: consider requests in order in
which they start

30.04.2018 Chapter 4 20

Not optimal!

Interval Scheduling

Strategy 2: consider requests in increasing
order of length

30.04.2018 Chapter 4 21

Not optimal!

Interval Scheduling

Strategy 3: consider requests in order in
which they finish

Always produces optimal result!

30.04.2018 Chapter 4 22

Huffman Trees
Minimum code length problem: Given a text, we want to find a
code for its letters that minimizes the code length of the text.

Problem: Code is not allowed to be ambiguous, i.e., there should
be a unique way of recovering the text from the code.

Unique coding strategy: prefix coding
Definition: A prefix code for an alphabet Σ is a function γ that
assigns to each letter x∈Σ a bit string so that for any x,y∈Σ, γ(x)
is not a prefix of γ(y).

Example:

30.04.2018 Chapter 4 23

x∈Σ 0 1 2 3 4 5 6 7 8 9
γ(x) 00 0100 0110 0111 1001 1010 1011 1101 1110 1111

Huffman Trees
Definition: The frequency f[x] of a letter x∈Σ is
the fraction of letters in the given text that is
equal to x.

Example:
• Σ = {0,1,2}
• text =„0010022001“ (10 letters)
• f[0] = 3/5
• f[1] = 1/5
• f[2] = 1/5

30.04.2018 Chapter 4 24

Huffman Trees
Definition: The code length of a text T of n letters w.r.t. code γ is
defined as

BL(T) = Σx∈Σ n⋅f[x]⋅|γ(x)|

Example:
• Σ = {a,b,c,d}
• γ(a) = 0; γ(b) =101; γ(c)= 110; γ(d)=111
• T = „aacdaabb“
• code length = 16

Optimal prefix code problem: Given an alphabet Σ and a
frequency function f:Σ→[0,1], find a prefix code that minimizes

ABL(γ) = Σx∈Σ f[x]⋅|γ(x)|

30.04.2018 Chapter 4 25

Huffman Trees

Binary trees and prefix codes:

30.04.2018 Chapter 4 26

b

a

cd

0

0

0

1

1 x∈Σ γ(x)

a 00

b 1

c 011

d 010

1

Huffman Trees

Binary trees and prefix codes:

30.04.2018 Chapter 4 27

x∈Σ γ(x)

a 11

b 01

c 00

d 10
c b d a

0

0 0

1

1 1

Huffman Trees
Definition: The depth of a tree node is the length of
its path from the root.

30.04.2018 Chapter 4 28

b

a

cd

0

0

0

1

1

1

depth(c) = 3

ABL(T) = Σx∈Σ f[x]⋅depthT(x)

Huffman Trees
Idea of Huffman‘s algorithm:
Repeatedly do the following until only one letter is
left in Σ:
• Pick the two letters x,y∈Σ of lowest frequencies

and connect them to a tree with root z. Remove
x,y from Σ and add instead z to Σ with frequency
f[z]=f[x]+f[y].

30.04.2018 Chapter 4 29

z

yx

Huffman Trees

Example:

30.04.2018 Chapter 4 30

x∈Σ f[x]
a 23%
b 12%
c 55%
d 10%

23%

10% 12%

22%

45% 55%

100%

Greedy Algorithms

There is a general approach:

Whenever an optimization problem can be
modeled as a matroid, it can be solved by a
Greedy algorithm.

30.04.2018 Chapter 4 31

30.04.2018 Chapter 4 32

Next Lecture

Topic: Basic graph algorithms

	Premaster Course Algorithms 1��Chapter 4: Dyanamic Programming and Greedy Algorithms
	Overview
	Dynamic Programming
	Dynamic Programming
	Rod-cutting Problem
	Rod-cutting Problem
	Rod-cutting Problem
	Matrix-chain Multiplication
	Matrix-chain Multiplication
	Longest Common Subsequence
	Longest Common Subsequence
	Longest Common Subsequence
	Optimal Binary Search Tree
	Optimal Binary Search Tree
	Overview
	Greedy Algorithms
	Interval Scheduling
	Interval Scheduling
	Interval Scheduling
	Interval Scheduling
	Interval Scheduling
	Interval Scheduling
	Huffman Trees
	Huffman Trees
	Huffman Trees
	Huffman Trees
	Huffman Trees
	Huffman Trees
	Huffman Trees
	Huffman Trees
	Greedy Algorithms
	Next Lecture

