

Christian Scheideler Institut für Informatik Universität Paderborn

Lecture: Mon 11:00-14:00, F0.530 Tutorial: Mon 09:00-11:00, F0.530 (starts 2nd week)

Website:

see http://cs.uni-paderborn.de/ti/lehre/veranstaltungen/ss-2019

Focus Areas and Grading:

- Focus areas "Algorithm Design" and "Networks and Communication"
- Prerequisites for oral exam: presentation of solution to homework problem and software project
- Grading: oral exam (recommended: by end of September)

Prerequisites:

- basic knowledge in algorithms and data structures
- recommended: distributed algorithms and data structures course

Homework assignments:

- Weekly assignments each Monday on the website (starting with this week)
- Theoretical and practical problems

Slides and assignments: course website Book recommendations: no book available (lecture is based on newest results)

Embedding into CS Curriculum

Embedding into CS Curriculum

Goals:

- 1. Introduction to advanced concepts in distributed algorithms and data structures.
- 2. Introduction to important design methods.
- 3. Introduction to important analytical methods.

Sequential Algorithms and Data Structures

Distributed Algorithms and Data Structures

What are the basic problems for distributed algorithms and data structures?

Definition 1.1: A data structure is a certain way to organize data in a computer so that operations like, for example, search, insert, and delete are simple and effective to realize.

Simple examples:

• Lists

• Arrays

Basic view:

Classical case: computer with one processor

Computer with several processors/cores:

Shared Memory

Computer with several processors/cores:

Overlaps:

- access conflicts (correctness)
- performance problems (efficiency)

Chapter 1

Multiple computers:

Problem: distribution of DS among computers

Chapter 1

Multiple computers:

Problem: distribution of DS among computers

Chapter 1

Multiple computers:

Basic problems:

- How to interconnect the computers?
- How to coordinate the management of the DS among the computers?

Multiple computers:

How to manage the DS?

- We need redundancy to cope with failures.
- But then we need to maintain consistency!

Distributed Algorithms:

Input I might be split into different pieces I_j that are distributed among many computers.

How to efficiently solve problems (minimum spanning tree, shortest paths,..) in this case?

General problem:

Find solutions that are scalable, robust and secure (because participants might be faulty or adversarial, or might get attacked from outside!)

Contents:

- 1. Introduction
- 2. Foundations
- 3. Link primitives
- 4. Networks
- 5. Consensus and Blockchains
- 6. Information Dissemination
- 7. Information Aggregation
- 8. Distributed Scheduling
- 9. Distributed Optimization

Foundations

Graphs and graph parameters, processes, ...

- Contents:
- 1. Introduction
- 2. Foundations
- 3. Link primitives
- 4. Networks
- 5. Consensus and Blockchains
- 6. Information Dissemination
- 7. Distributed Scheduling
- 8. Distributed Optimization

Link Primitives

Admissible link primitives w.r.t. connectivity:

Contents:

- 1. Introduction
- 2. Foundations
- 3. Link primitives
- 4. Networks
- 5. Consensus and Blockchains
- 6. Information Dissemination
- 7. Distributed Scheduling
- 8. Distributed Optimization

Networks

Minimum spanning tree:

New approach: hybrid networks

Contents:

- 1. Introduction
- 2. Foundations
- 3. Link primitives
- 4. Networks
- 5. Consensus and Blockchains
- 6. Information Dissemination
- 7. Distributed Scheduling
- 8. Distributed Optimization

Consensus and Blockchains

Consensus:

Contents:

- 1. Introduction
- 2. Foundations
- 3. Link primitives
- 4. Networks
- 5. Consensus and Blockchains
- 6. Information Dissemination
- 7. Distributed Scheduling
- 8. Distributed Optimization

Information Dissemination

Contents:

- 1. Introduction
- 2. Foundations
- 3. Link primitives
- 4. Networks
- 5. Consensus and Blockchains
- 6. Information Dissemination
- 7. Distributed Scheduling
- 8. Distributed Optimization

Distributed Scheduling

Independent set, matching, coloring,...

Contents:

- 1. Introduction
- 2. Foundations
- 3. Link primitives
- 4. Networks
- 5. Consensus and Blockchains
- 6. Information Dissemination
- 7. Distributed Scheduling
- 8. Distributed Optimization

Distributed Optimization

Smallest enclosing ball problem:

Questions?