Advanced Distributed Algorithms and Data Structures

SS 2019
Homework Assignment 1

Problem 1:

Prove Theorem 2.7. (Hint: Determine an upper bound on how many nodes can be reached by a path of length ℓ from node v in a graph of maximal degree δ.)

Problem 2:

Prove Theorem 2.8. (Hint: Generalize the definition of the d-dimensional de Bruijn graphs on slide 20 of chapter 2 to a family of b-ary de Bruijn graphs, i.e., $V=\{0, \ldots, b-1\}^{d}$, and determine the degree and diameter of these graphs.)

Problem 3:

Consider the synchronizer α on slide 39 of chapter 2 .
(a) Formally show (by induction) that the round numbers of two neighboring nodes never differ by more than 1 at any time.
(b) Use (a) in order to bound the maximum difference the round numbers of two nodes can have at any time in a connected undirected graph $G=(V, E)$. (Hint: use a suitable graph parameter.)

