Advanced Distributed
 Algorithms and Data Structures
 Chapter 2: Graph Theory

Christian Scheideler
Institut für Informatik
Universität Paderborn

Overview

- Graph theory
- Classical graph families
- Fundamental graph parameters

Graph Theory

Definition 2.1: A graph $G=(V, E)$ consists of a node set V and an edge set E.

- G undirected: $\mathrm{E} \subseteq\{\{\mathrm{v}, \mathrm{w}\} \mid \mathrm{v}, \mathrm{w} \in \mathrm{V}\}$

- G directed: $E \subseteq\{(v, w) \mid v, w \in V\}$

Graph Theory

In our case: graph represents knowledge or connections between processes

A knows B and B knows A

Graph Theory

Definition 2.2: Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a graph.

- G undirected: degree of $v \in \mathrm{~V}$:

$$
\delta(v)=|\{w \in V \mid\{v, w\} \in E\}|
$$

- G directed: degree of $v \in V$:

$$
\delta(v)=|\{w \in V \mid(v, w) \in E\}|
$$

Degree of $\mathrm{G}: \Delta=\max _{\mathrm{v} \in \mathrm{V}} \delta(\mathrm{v})$

Graph Theory

Degree: corresponds to update costs for processes if the set of processes changes.

Degree should not be too high.

Graph Theory

Definition 2.3: Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a graph. An edge sequence $\mathrm{p}=\left(\mathrm{e}_{1}, \mathrm{e}_{2}, \ldots, \mathrm{e}_{\mathrm{k}}\right)$ in G is called a path if there is a node sequence $\left(v_{0}, \ldots, v_{k}\right)$ with

- G undirected: $e_{i}=\left\{v_{i-1}, v_{i}\right\}$ for all $i \in\{1, \ldots, k\}$
- G directed: $e_{i}=\left(v_{i-1}, v_{i}\right)$ for all $i \in\{1, \ldots, k\}$

Graph Theory

Definition 2.4: A graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is called

- connected if G is undirected and for all node pairs $v, w \in V$ there is a path from v to w in G.
- weakly connected if G is directed and for all node pairs $v, w \in V$ there is a path from v to w in the undirected version of G.
- strongly connected if G is directed and for all node pairs $\mathrm{v}, \mathrm{w} \in \mathrm{V}$ there is a (directed) path from v to w in G.

Graph Theory

Examples:

(1) Graph is only weakly connected

(2) Graph is strongly connected

Graph Theory

Definition 2.5: Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a graph and $\mathrm{p}=\left(\mathrm{e}_{1}, \mathrm{e}_{2}, \ldots, \mathrm{e}_{\mathrm{k}}\right)$ be a path from v to w in G.

- Length of $\mathrm{p}:|\mathrm{p}|=\mathrm{k}$
- Distance of w from $v: d(v, w)=$ min. path length from v to $w(d(v, w)=\infty$ if there is no path from v to $w)$
- Diameter of $G: D(G)=\max _{v, w \in v} d(v, w)$

Graph Theory

Diameter: lower bound for worst-case time (measured in number of communication rounds) for access to a process

Diameter should not be too high.

Graph Theory

Definition 2.6: Let $G=(V, E)$ be a graph.

- $\Gamma(U)$: neighbor set of a node set $U \subseteq V$, i.e., $\Gamma(U)=\{w \in V \backslash U \mid$ there is a $v \in U$ with $\{v, w\} \in E$ (resp.
$(\mathrm{V}, \mathrm{w}) \in \mathrm{E}$ in the directed case) $\}$
- $\alpha(U)=|\Gamma(U)| /|U|:$ expansion of U
- $\alpha(G)=\min _{U \subseteq V, 1 \leq|U| \leq\lceil|V| / 2\rceil} \alpha(U)$: expansion of G

Graph Theory

Expansion: k failures \Rightarrow at most $k / \alpha(G)$ nodes get disconnected from rest of the graph

Proof: Let U be set of all non-failing nodes that get disconnected due to failed nodes. Then all nodes in $\Gamma(\mathrm{U})$ failed, i.e., $|\Gamma(\mathrm{U})| \leq \mathrm{k}$. Moreover, $\alpha(\mathrm{U}) \geq \alpha(\mathrm{G})$ and $\alpha(\mathrm{U})=|\Gamma(\mathrm{U})| /|\mathrm{U}|$, so $|\mathrm{U}| \leq \mathrm{k} / \alpha(\mathrm{G})$.

Graph Theory

Expansion: k failures \Rightarrow at most $k / \alpha(G)$ nodes get disconnected from rest of the graph

Expansion should be as high as possible

Graph Theory

In the following we consider classical families of graphs $\mathcal{G}=\left\{\mathrm{G}_{1}, \mathrm{G}_{2}, \ldots\right\}$.
Example: Family of linear lists

We say: graph G from a family G has constant degree if the degree of all graphs in G is upper bounded by a constant.

Graph Theory

In the following we consider classical families of graphs $\mathcal{G}=\left\{\mathrm{G}_{1}, \mathrm{G}_{2}, \ldots\right\}$.
Example: Family of linear lists

For a graph G from G we use

- n: number of nodes (resp. size) of G
- m: number of edges of G

Classical Graph Families

Complete graph / clique: every node is connected to every other node

Advantage: low diameter, high expansion

Classical Graph Families

Complete graph / clique: every node is connected to every other node

Problem: high degree! ($\delta(\mathrm{v})=\mathrm{n}-1$ for all v) WS 2016

Linear List

- Degree 2 (minimal for connectivity), BUT
- Diameter is bad ($\mathrm{D}($ List $)=\mathrm{n}-1$)
- Expansion is bad $(\alpha($ List $) \approx 2 / n)$

How to obtain a small degree and diameter?

Complete Binary Tree

- $n=2^{k+1}-1$ nodes when depth is $k \in \mathbb{N}_{0}$
- degree is 3
- Diameter is $2 k \approx 2 \log _{2} n$, BUT
- Expansion is bad $(\alpha($ Baum $) \approx 2 / n)$

2-dimensional Grid

- $n=k^{2}$ nodes when there are k nodes along each side, maximal degree 4
- Diameter is $2(k-1) \approx 2 \sqrt{n}$
- Expansion is $\approx 2 / \sqrt{n}$
- Not bad, but can we do better?

d-dimensional Hypercube

- Nodes: $\left(x_{1}, \ldots, x_{d}\right) \in\{0,1\}^{d}$
- Edges: $\forall \mathrm{i}:\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{d}}\right) \rightarrow\left(\mathrm{x}_{1}, \ldots, 1-\mathrm{x}_{\mathrm{i}}, . ., \mathrm{x}_{\mathrm{d}}\right)$

Bit i flipped

Degree d, diameter d, expansion $\approx 1 / \sqrt{d}$

d-dimensional de Bruijn Graph

- Nodes: $\left(x_{1}, \ldots, x_{d}\right) \in\{0,1\}^{d}$
- Edges: $\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{d}}\right) \rightarrow\left(0, \mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{d}-1}\right)$

$$
\left(1, x_{1}, x_{2}, \ldots, x_{d-1}\right)
$$

10

Chapter 2

Diameter

Theorem 2.7: Every graph of maximal degree $\delta>2$ and size n has a diameter of at least $(\log n) /(\log (\delta-1))-1$.
Proof: exercise

Theorem 2.8: For all even $\delta>2$ there is a family of graphs of maximal degree δ and size n with diameter at most $(\log n) /(\log \delta-1)$.
Proof: exercise

Expansion

Theorem 2.9: For every graph G it holds that $\alpha(G) \in[0,1]$. Proof: see the definition of the expansion $\alpha(\mathrm{G})$.

Theorem 2.10: There is a family of graphs with constant degree and constant expansion.

Example: Gabber-Galil Graph

- Node set: $(x, y) \in\{0, \ldots, k-1\}^{2}$
- $(x, y) \rightarrow(x, x+y),(x, x+y+1),(x+y, y),(x+y+1, y)(m o d k)$

References

- A. Bagchi, A. Bhargava, A. Chaudhary, D. Eppstein, and C. Scheideler. The effect of faults on network expansion. In Proc. of the 16th ACM Symp. on Parallel Algorithms and Architectures (SPAA), pages 286-293, 2004.
- O. Gabber and Z. Galil. Explicit constructions of linear-sized superconcentrators. Journal of Computer and System Sciences, 22:407-420, 1981.
- F. Leighton. Introduction to Parallel Algorithms and Architectures: Arrays • Trees • Hypercubes. Morgan Kaufmann Publishers, 1992.
- A. Lubotzky, R. Phillips, and R. Sarnak. Ramanujan graphs. Combinatorica, 8(3):261-277, 1988.
- C. Scheideler. Universal Routing Strategies for Interconnection Networks. Lecture Notes in Computer Science 1390. Springer, 1998.

Questions?

