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3 Probability Theory

3.1 Basic definitions in probability theory
Consider an arbitrary discrete random experiment (like throwing a coin), and let Ω = {w1, w2, w3, . . .} be the sample
space, i.e., the set of all outcomes of this random experiment.

• An event is an arbitrary subset of Ω, and

• event A is true for some outcome w ∈ Ω if and only if w ∈ A.

The function p : Ω → [0, 1] is called a probability distribution over the sample space if and only if
∑
w∈Ω p(w) = 1. In

this case, (Ω, p) forms a probability space. p naturally extends to events in a sense that for all events A ⊆ Ω we define
p(A) =

∑
w∈A p(w). When p is clear from the context, we will use Pr[·] instead of p(·). The requirements on a probability

space imply the following principle.

Theorem 3.1 (Inclusion-Exclusion Principle) Let A1, . . . , An be an arbitrary collection of events. Then it holds that

Pr[

n⋃
i=1

Ai] =

n∑
k=1

(−1)k+1
∑

i1<i2<...<ik

Pr[

k⋂
j=1

Aij ]

Important special cases of this theorem are the so-called Boole’s inequalities:

• Pr[
⋃n
i=1Ai] ≤

∑n
i=1 Pr[Ai]

• Pr[
⋃n
i=1Ai] ≥

∑n
i=1 Pr[Ai]−

∑
1≤i<j≤n Pr[Ai ∩Aj ]

3.2 Conditional probability
The conditional probability that the event B is true under the assumption that A is true is given by

Pr[B | A] =
Pr[A ∩B]

Pr[A]

From this it follows that
Pr[A ∩B] = Pr[A] · Pr[B | A]

and, in general,

Pr[A1 ∩ . . . ∩An] =

n∏
i=1

Pr[Ai | A1 ∩ . . . ∩Ai−1]

Since
Pr[A ∩B] = Pr[A] · Pr[B | A] = Pr[B] · Pr[A | B]

we obtain Bayes’ formula:

Pr[A | B] =
Pr[A] · Pr[B | A]

Pr[B]

Two events A and B are
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• independent if Pr[B | A] = Pr[B],

• negatively correlated if Pr[B | A] ≤ Pr[B], and

• positively correlated if Pr[B | A] ≥ Pr[B].

According to Bayes’ formula these properties are symmetric. Hence, for independent events, Pr[A ∩B] = Pr[A] · Pr[B].
Suppose that the sample space Ω can be represented as Ω = Ω1 × . . . × Ωk with probability distributions p1 : Ω1 →

[0, 1], . . . , pk : Ωk → [0, 1] so that for each outcome w = (w1, . . . , wk) ∈ Ω it holds that Pr[w] =
∏k
i=1 pi(wi). Then it is

easy to show that the outcomes for different subspaces Ωi are independent and therefore, events over different subspaces
are independent. That is, for arbitrary events A1 ⊆ Ω1 and A2 ⊆ Ω2 it holds for A′1 = A1 × Ω2 and A′2 = Ω1 ×A2 that

Pr[A′1 ∩A′2] = Pr[A′1] · Pr[A′2] .

Example: balls into bins

Suppose that we have n balls and n bins. Consider the random experiment that every ball is thrown uniformly and
independently at random into one of these bins.

Theorem 3.2 The probability that bin 1 contains at least one ball is at least 1/2.

Proof. In our case, the sample space Ω can be represented as Ω = Ω1 × . . . × Ωn with Ωi = {1, . . . , n} and probability
distributions pi : Ωi → [0, 1] with pi(w) = 1/n for all w ∈ Ωi (because the balls are thrown uniformly at random). Also,
for any outcome w = (w1, . . . , wn) ∈ Ω it holds that Pr[w] =

∏n
i=1 pi(wi) (because the balls are thrown independently at

random). Let Ai be the event that ball i is thrown into bin 1. Then it holds that Pr[Ai] = 1/n and therefore, Pr[Ai∩Aj ] =
Pr[Ai] · Pr[Aj ] = 1/n2 for all i 6= j. Thus,

Pr[

n⋃
i=1

Ai] ≥
n∑
i=1

Pr[Ai]−
∑

1≤i<j≤n

Pr[Ai ∩Aj ]

=

n∑
i=1

1

n
−

∑
1≤i<j≤n

1

n2

= 1−
(
n

2

)
1

n2
≥ 1− 1

2
=

1

2

ut

Note that the exact value of the probability is 1− (1− 1/n)n = 1− 1/e for n→∞.

3.3 Random variables
A function X : Ω → R is called a random variable. If X : Ω → {0, 1}, we call X a binary random variable or simply
indicator. In order to simplify notation, we define

Pr[X = x] = Pr[{w ∈ Ω : X(w) = x}]

Analogously,

Pr[X ≤ x] = Pr[{w ∈ Ω : X(w) ≤ x}] und Pr[X ≥ x] = Pr[{w ∈ Ω : X(w) ≥ x}]

For two random variables X and Y we say that X stochastically dominates Y if and only if Pr[X ≥ z] ≥ Pr[Y ≥ z] for
all z.
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3.4 Expectation
The expectation of a random variable X : Ω→ R is defined as

E[X] =
∑
w∈Ω

X(w) · Pr[w]

Therefore, also E[X] =
∑
x∈X(Ω) x · Pr[X = x]. For the special case that X : Ω→ N, we obtain

E[X] =
∑
x∈N

Pr[X ≥ x]

and for an indicator X , E[X] = Pr[X = 1]. Basic properties of the expectation are:

• X is non-negative: E[X] ≥ 0

• |E[X]| ≤ E[|X|]

• E[c ·X] = c · E[X]

• E[X + Y ] = E[X] + E[Y ], which is also known as the linearity of expectation.

Two random variables X and Y are (stochastically) independent if for all x, y ∈ R it holds that

Pr[X = x | Y = y] = Pr[X = x]

Theorem 3.3 If X and Y are stochastically independent, then E[X · Y ] = E[X] · E[Y ].

The proof is an exercise.

3.5 Probability bounds
The most basic probability bound is the following:

Theorem 3.4 For any random variable X ,

Pr[X < E[X]] < 1 and Pr[X > E[X]] < 1

Sometimes, this theorem already suffices to prove the existence of certain outcomes as demonstrated by the following
example.

Example: MaxCUT

Let G = (V,E) be an undirected graph. For a subset U ⊆ V we call Ū = V \ U the complement of U and

(U, Ū) = {{v, w} ∈ E | v ∈ U ∧ w ∈ Ū}

the cut separating U from Ū in G. In the MaxCUT problem we are given a graph G = (V,E), and the task is to find a
subset U ⊆ V that maximizes |(U, Ū)|.

Theorem 3.5 For every undirected graph G = (V,E) with m edges there is a cut of size at least m/2.

Proof. Suppose that we toss a coin independently for each node in V with Pr[heads] = Pr[tails] = 1/2. All nodes with
outcome ”heads” are assigned to U and all other nodes are assigned to Ū . For each edge e = {v, w} ∈ E let the binary
random variable Xe be 1 if and only if e ∈ (U, Ū). Since the outcomes of the coin tosses for v and w are independent,

Pr[Xe = 1] = Pr[(heads,tails)] + Pr[(tails,heads)] = 1/4 + 1/4 = 1/2 .

Let X be the size of the cut (U, Ū). Then it holds that X =
∑
e∈E Xe and therefore,

E[X] =
∑
e∈E

E[Xe] = m · 1/2 = m/2 .
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From Theorem 3.4 it follows that there is a cut of size at least m/2. ut

Often concrete probability bounds are needed for the deviation from the expectation. The most well-known inequality
for this is Markov’s inequality.

Theorem 3.6 (Markov’s Inequality) Let X be an arbitrary non-negative random variable. Then it holds for all k > 0
that

Pr[X ≥ k] ≤ E[X]

k

Proof.
E[X] =

∑
x∈X(Ω)

x · Pr[X = x] ≥
∑

x∈X(Ω),x≥k

x · Pr[X = x] ≥ k · Pr[X ≥ k]

ut

This inequality can be generalized in the following way.

Theorem 3.7 (General Markov’s Inequality) LetX be an arbitrary random variable and g be an arbitrary function that
is non-negative and monotonically increasing on the values in X(Ω). Then it holds for all k ∈ X(Ω) that

Pr[X ≥ k] ≤ E[g(X)]

g(k)

Proof.
E[g(X)] =

∑
x∈X(Ω)

g(x) · Pr[X = x] ≥
∑

x∈X(Ω),x≥k

g(x) · Pr[X = x] ≥ g(k) · Pr[X ≥ k]

ut

From the Markov inequality we can also derive the well-known Chebychev inequality. The variance of a random
variable X is defined as V[X] = E[(X − E[X])2].

Theorem 3.8 (Chebychev’s Inequality) Let X be an arbitrary random variable. For all k > 0,

Pr[|X − E[X]| ≥ k] ≤ V[X]

k2

Proof. From the Markov inequality it follows that

Pr[|X| ≥ k] = Pr[X2 ≥ k2] ≤ E[X2]/k2

Substituting X by X − E[X] results in the theorem. ut

More powerful inequalities are the so-called Chernoff bounds.

Theorem 3.9 (Chernoff Bounds) Let X1, . . . , Xn be independent binary random variables. Let X =
∑n
i=1Xi and

µ = E[X]. Then it holds for all δ > 0 that

Pr[X ≥ (1 + δ)µ] ≤
(

eδ

(1 + δ)1+δ

)µ
≤ e−δ

2µ/(2(1+δ/3)) ≤ e−min{δ2,δ}µ/3

and for all 0 < δ < 1 that

Pr[X ≤ (1− δ)µ] ≤
(

e−δ

(1− δ)1−δ

)µ
≤ e−δ

2µ/2
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Proof. We will only show the first inequality. Let pi = Pr[Xi = 1] = E[Xi] for all i. According to the Markov inequality
it holds for every function g(x) = eh·x with h > 0 and every δ ≥ 0 that

Pr[X ≥ (1 + δ)µ] ≤ e−h(1+δ)µ · E[eh·X ] (1)

Since X1, . . . , Xn are independent, it follows from Theorem 3.3 that

E[eh·X ] = E[eh(X1+...+Xn)] = E[eh·X1 · · · eh·Xn ] =
∏n
i=1 E[eh·Xi ]

=

n∏
i=1

(pie
h + (1− pi)) =

∏n
i=1(1 + pi(e

h − 1))

≤
n∏
i=1

e pi(e
h−1) since 1 + x ≤ ex for all x

= eµ(eh−1) .

Together with inequality (1) this implies that

Pr[X ≥ (1 + δ)µ] ≤ e−h(1+δ)µ · eµ(eh−1) = e−(1+h(1+δ)−eh)µ (2)

The right hand side of (2) is minimal for h = h0 with h0 = ln(1 + δ). Inserted into (2) we obtain

Pr[X ≥ (1 + δ)µ] ≤ (1 + δ)−(1+δ)µ · eδ·µ =

(
eδ

(1 + δ)1+δ

)µ
The inequality for Pr[X ≤ (1− δ)µ] is an exercise. ut

For more details on probability theory see, for example, [1].
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