Advanced Distributed Algorithms and Data Structures

Prof. Dr. Christian Scheideler
University of Paderborn, WS 2016

3 Probability Theory

3.1 Basic definitions in probability theory

Consider an arbitrary discrete random experiment (like throwing a coin), and let $\Omega=\left\{w_{1}, w_{2}, w_{3}, \ldots\right\}$ be the sample space, i.e., the set of all outcomes of this random experiment.

- An event is an arbitrary subset of Ω, and
- event A is true for some outcome $w \in \Omega$ if and only if $w \in A$.

The function $p: \Omega \rightarrow[0,1]$ is called a probability distribution over the sample space if and only if $\sum_{w \in \Omega} p(w)=1$. In this case, (Ω, p) forms a probability space. p naturally extends to events in a sense that for all events $A \subseteq \Omega$ we define $p(A)=\sum_{w \in A} p(w)$. When p is clear from the context, we will use $\operatorname{Pr}[\cdot]$ instead of $p(\cdot)$. The requirements on a probability space imply the following principle.

Theorem 3.1 (Inclusion-Exclusion Principle) Let A_{1}, \ldots, A_{n} be an arbitrary collection of events. Then it holds that

$$
\operatorname{Pr}\left[\bigcup_{i=1}^{n} A_{i}\right]=\sum_{k=1}^{n}(-1)^{k+1} \sum_{i_{1}<i_{2}<\ldots<i_{k}} \operatorname{Pr}\left[\bigcap_{j=1}^{k} A_{i_{j}}\right]
$$

Important special cases of this theorem are the so-called Boole's inequalities:

- $\operatorname{Pr}\left[\bigcup_{i=1}^{n} A_{i}\right] \leq \sum_{i=1}^{n} \operatorname{Pr}\left[A_{i}\right]$
- $\operatorname{Pr}\left[\bigcup_{i=1}^{n} A_{i}\right] \geq \sum_{i=1}^{n} \operatorname{Pr}\left[A_{i}\right]-\sum_{1 \leq i<j \leq n} \operatorname{Pr}\left[A_{i} \cap A_{j}\right]$

3.2 Conditional probability

The conditional probability that the event B is true under the assumption that A is true is given by

$$
\operatorname{Pr}[B \mid A]=\frac{\operatorname{Pr}[A \cap B]}{\operatorname{Pr}[A]}
$$

From this it follows that

$$
\operatorname{Pr}[A \cap B]=\operatorname{Pr}[A] \cdot \operatorname{Pr}[B \mid A]
$$

and, in general,

$$
\operatorname{Pr}\left[A_{1} \cap \ldots \cap A_{n}\right]=\prod_{i=1}^{n} \operatorname{Pr}\left[A_{i} \mid A_{1} \cap \ldots \cap A_{i-1}\right]
$$

Since

$$
\operatorname{Pr}[A \cap B]=\operatorname{Pr}[A] \cdot \operatorname{Pr}[B \mid A]=\operatorname{Pr}[B] \cdot \operatorname{Pr}[A \mid B]
$$

we obtain Bayes' formula:

$$
\operatorname{Pr}[A \mid B]=\frac{\operatorname{Pr}[A] \cdot \operatorname{Pr}[B \mid A]}{\operatorname{Pr}[B]}
$$

Two events A and B are

- independent if $\operatorname{Pr}[B \mid A]=\operatorname{Pr}[B]$,
- negatively correlated if $\operatorname{Pr}[B \mid A] \leq \operatorname{Pr}[B]$, and
- positively correlated if $\operatorname{Pr}[B \mid A] \geq \operatorname{Pr}[B]$.

According to Bayes' formula these properties are symmetric. Hence, for independent events, $\operatorname{Pr}[A \cap B]=\operatorname{Pr}[A] \cdot \operatorname{Pr}[B]$.
Suppose that the sample space Ω can be represented as $\Omega=\Omega_{1} \times \ldots \times \Omega_{k}$ with probability distributions $p_{1}: \Omega_{1} \rightarrow$ $[0,1], \ldots, p_{k}: \Omega_{k} \rightarrow[0,1]$ so that for each outcome $w=\left(w_{1}, \ldots, w_{k}\right) \in \Omega$ it holds that $\operatorname{Pr}[w]=\prod_{i=1}^{k} p_{i}\left(w_{i}\right)$. Then it is easy to show that the outcomes for different subspaces Ω_{i} are independent and therefore, events over different subspaces are independent. That is, for arbitrary events $A_{1} \subseteq \Omega_{1}$ and $A_{2} \subseteq \Omega_{2}$ it holds for $A_{1}^{\prime}=A_{1} \times \Omega_{2}$ and $A_{2}^{\prime}=\Omega_{1} \times A_{2}$ that

$$
\operatorname{Pr}\left[A_{1}^{\prime} \cap A_{2}^{\prime}\right]=\operatorname{Pr}\left[A_{1}^{\prime}\right] \cdot \operatorname{Pr}\left[A_{2}^{\prime}\right]
$$

Example: balls into bins

Suppose that we have n balls and n bins. Consider the random experiment that every ball is thrown uniformly and independently at random into one of these bins.

Theorem 3.2 The probability that bin 1 contains at least one ball is at least $1 / 2$.
Proof. In our case, the sample space Ω can be represented as $\Omega=\Omega_{1} \times \ldots \times \Omega_{n}$ with $\Omega_{i}=\{1, \ldots, n\}$ and probability distributions $p_{i}: \Omega_{i} \rightarrow[0,1]$ with $p_{i}(w)=1 / n$ for all $w \in \Omega_{i}$ (because the balls are thrown uniformly at random). Also, for any outcome $w=\left(w_{1}, \ldots, w_{n}\right) \in \Omega$ it holds that $\operatorname{Pr}[w]=\prod_{i=1}^{n} p_{i}\left(w_{i}\right)$ (because the balls are thrown independently at random). Let A_{i} be the event that ball i is thrown into bin 1 . Then it holds that $\operatorname{Pr}\left[A_{i}\right]=1 / n$ and therefore, $\operatorname{Pr}\left[A_{i} \cap A_{j}\right]=$ $\operatorname{Pr}\left[A_{i}\right] \cdot \operatorname{Pr}\left[A_{j}\right]=1 / n^{2}$ for all $i \neq j$. Thus,

$$
\begin{aligned}
\operatorname{Pr}\left[\bigcup_{i=1}^{n} A_{i}\right] & \geq \sum_{i=1}^{n} \operatorname{Pr}\left[A_{i}\right]-\sum_{1 \leq i<j \leq n} \operatorname{Pr}\left[A_{i} \cap A_{j}\right] \\
& =\sum_{i=1}^{n} \frac{1}{n}-\sum_{1 \leq i<j \leq n} \frac{1}{n^{2}} \\
& =1-\binom{n}{2} \frac{1}{n^{2}} \geq 1-\frac{1}{2}=\frac{1}{2}
\end{aligned}
$$

Note that the exact value of the probability is $1-(1-1 / n)^{n}=1-1 / e$ for $n \rightarrow \infty$.

3.3 Random variables

A function $X: \Omega \rightarrow \mathbb{R}$ is called a random variable. If $X: \Omega \rightarrow\{0,1\}$, we call X a binary random variable or simply indicator. In order to simplify notation, we define

$$
\operatorname{Pr}[X=x]=\operatorname{Pr}[\{w \in \Omega: X(w)=x\}]
$$

Analogously,

$$
\operatorname{Pr}[X \leq x]=\operatorname{Pr}[\{w \in \Omega: X(w) \leq x\}] \quad \text { und } \quad \operatorname{Pr}[X \geq x]=\operatorname{Pr}[\{w \in \Omega: X(w) \geq x\}]
$$

For two random variables X and Y we say that X stochastically dominates Y if and only if $\operatorname{Pr}[X \geq z] \geq \operatorname{Pr}[Y \geq z]$ for all z.

3.4 Expectation

The expectation of a random variable $X: \Omega \rightarrow \mathbb{R}$ is defined as

$$
\mathbb{E}[X]=\sum_{w \in \Omega} X(w) \cdot \operatorname{Pr}[w]
$$

Therefore, also $\mathbb{E}[X]=\sum_{x \in X(\Omega)} x \cdot \operatorname{Pr}[X=x]$. For the special case that $X: \Omega \rightarrow \mathbb{N}$, we obtain

$$
\mathbb{E}[X]=\sum_{x \in \mathbb{N}} \operatorname{Pr}[X \geq x]
$$

and for an indicator $X, \mathbb{E}[X]=\operatorname{Pr}[X=1]$. Basic properties of the expectation are:

- X is non-negative: $\mathbb{E}[X] \geq 0$
- $|\mathbb{E}[X]| \leq \mathbb{E}[|X|]$
- $\mathbb{E}[c \cdot X]=c \cdot \mathbb{E}[X]$
- $\mathbb{E}[X+Y]=\mathbb{E}[X]+\mathbb{E}[Y]$, which is also known as the linearity of expectation.

Two random variables X and Y are (stochastically) independent if for all $x, y \in \mathbb{R}$ it holds that

$$
\operatorname{Pr}[X=x \mid Y=y]=\operatorname{Pr}[X=x]
$$

Theorem 3.3 If X and Y are stochastically independent, then $\mathbb{E}[X \cdot Y]=\mathbb{E}[X] \cdot \mathbb{E}[Y]$.
The proof is an exercise.

3.5 Probability bounds

The most basic probability bound is the following:
Theorem 3.4 For any random variable X,

$$
\operatorname{Pr}[X<\mathbb{E}[X]]<1 \quad \text { and } \quad \operatorname{Pr}[X>\mathbb{E}[X]]<1
$$

Sometimes, this theorem already suffices to prove the existence of certain outcomes as demonstrated by the following example.

Example: MaxCUT

Let $G=(V, E)$ be an undirected graph. For a subset $U \subseteq V$ we call $\bar{U}=V \backslash U$ the complement of U and

$$
(U, \bar{U})=\{\{v, w\} \in E \mid v \in U \wedge w \in \bar{U}\}
$$

the cut separating U from \bar{U} in G. In the MaxCUT problem we are given a graph $G=(V, E)$, and the task is to find a subset $U \subseteq V$ that maximizes $|(U, \bar{U})|$.
Theorem 3.5 For every undirected graph $G=(V, E)$ with m edges there is a cut of size at least $m / 2$.
Proof. Suppose that we toss a coin independently for each node in V with $\operatorname{Pr}[$ heads $]=\operatorname{Pr}[$ tails $]=1 / 2$. All nodes with outcome "heads" are assigned to U and all other nodes are assigned to \bar{U}. For each edge $e=\{v, w\} \in E$ let the binary random variable X_{e} be 1 if and only if $e \in(U, \bar{U})$. Since the outcomes of the coin tosses for v and w are independent,

$$
\operatorname{Pr}\left[X_{e}=1\right]=\operatorname{Pr}[(\text { heads,tails })]+\operatorname{Pr}[(\text { tails,heads })]=1 / 4+1 / 4=1 / 2
$$

Let X be the size of the cut (U, \bar{U}). Then it holds that $X=\sum_{e \in E} X_{e}$ and therefore,

$$
\mathbb{E}[X]=\sum_{e \in E} \mathbb{E}\left[X_{e}\right]=m \cdot 1 / 2=m / 2
$$

From Theorem 3.4 it follows that there is a cut of size at least $m / 2$.
Often concrete probability bounds are needed for the deviation from the expectation. The most well-known inequality for this is Markov's inequality.

Theorem 3.6 (Markov's Inequality) Let X be an arbitrary non-negative random variable. Then it holds for all $k>0$ that

$$
\operatorname{Pr}[X \geq k] \leq \frac{\mathbb{E}[X]}{k}
$$

Proof.

$$
\mathbb{E}[X]=\sum_{x \in X(\Omega)} x \cdot \operatorname{Pr}[X=x] \geq \sum_{x \in X(\Omega), x \geq k} x \cdot \operatorname{Pr}[X=x] \geq k \cdot \operatorname{Pr}[X \geq k]
$$

This inequality can be generalized in the following way.
Theorem 3.7 (General Markov's Inequality) Let X be an arbitrary random variable and g be an arbitrary function that is non-negative and monotonically increasing on the values in $X(\Omega)$. Then it holds for all $k \in X(\Omega)$ that

$$
\operatorname{Pr}[X \geq k] \leq \frac{\mathbb{E}[g(X)]}{g(k)}
$$

Proof.

$$
\mathbb{E}[g(X)]=\sum_{x \in X(\Omega)} g(x) \cdot \operatorname{Pr}[X=x] \geq \sum_{x \in X(\Omega), x \geq k} g(x) \cdot \operatorname{Pr}[X=x] \geq g(k) \cdot \operatorname{Pr}[X \geq k]
$$

From the Markov inequality we can also derive the well-known Chebychev inequality. The variance of a random variable X is defined as $\mathbb{V}[X]=\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right]$.

Theorem 3.8 (Chebychev's Inequality) Let X be an arbitrary random variable. For all $k>0$,

$$
\operatorname{Pr}[|X-\mathbb{E}[X]| \geq k] \leq \frac{\mathbb{V}[X]}{k^{2}}
$$

Proof. From the Markov inequality it follows that

$$
\operatorname{Pr}[|X| \geq k]=\operatorname{Pr}\left[X^{2} \geq k^{2}\right] \leq \mathbb{E}\left[X^{2}\right] / k^{2}
$$

Substituting X by $X-\mathbb{E}[X]$ results in the theorem.
More powerful inequalities are the so-called Chernoff bounds.
Theorem 3.9 (Chernoff Bounds) Let X_{1}, \ldots, X_{n} be independent binary random variables. Let $X=\sum_{i=1}^{n} X_{i}$ and $\mu=\mathbb{E}[X]$. Then it holds for all $\delta>0$ that

$$
\operatorname{Pr}[X \geq(1+\delta) \mu] \leq\left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{\mu} \leq e^{-\delta^{2} \mu /(2(1+\delta / 3))} \leq e^{-\min \left\{\delta^{2}, \delta\right\} \mu / 3}
$$

and for all $0<\delta<1$ that

$$
\operatorname{Pr}[X \leq(1-\delta) \mu] \leq\left(\frac{e^{-\delta}}{(1-\delta)^{1-\delta}}\right)^{\mu} \leq e^{-\delta^{2} \mu / 2}
$$

Proof. We will only show the first inequality. Let $p_{i}=\operatorname{Pr}\left[X_{i}=1\right]=\mathbb{E}\left[X_{i}\right]$ for all i. According to the Markov inequality it holds for every function $g(x)=e^{h \cdot x}$ with $h>0$ and every $\delta \geq 0$ that

$$
\begin{equation*}
\operatorname{Pr}[X \geq(1+\delta) \mu] \leq e^{-h(1+\delta) \mu} \cdot \mathbb{E}\left[e^{h \cdot X}\right] \tag{1}
\end{equation*}
$$

Since X_{1}, \ldots, X_{n} are independent, it follows from Theorem 3.3 that

$$
\begin{aligned}
\mathbb{E}\left[e^{h \cdot X}\right] & =\mathbb{E}\left[e^{h\left(X_{1}+\ldots+X_{n}\right)}\right]=\mathbb{E}\left[e^{h \cdot X_{1}} \cdots e^{h \cdot X_{n}}\right]=\prod_{i=1}^{n} \mathbb{E}\left[e^{h \cdot X_{i}}\right] \\
& =\prod_{i=1}^{n}\left(p_{i} e^{h}+\left(1-p_{i}\right)\right)=\prod_{i=1}^{n}\left(1+p_{i}\left(e^{h}-1\right)\right) \\
& \leq \prod_{i=1}^{n} e^{p_{i}\left(e^{h}-1\right)} \quad \text { since } 1+x \leq e^{x} \text { for all } x \\
& =e^{\mu\left(e^{h}-1\right)} .
\end{aligned}
$$

Together with inequality (1) this implies that

$$
\begin{equation*}
\operatorname{Pr}[X \geq(1+\delta) \mu] \leq e^{-h(1+\delta) \mu} \cdot e^{\mu\left(e^{h}-1\right)}=e^{-\left(1+h(1+\delta)-e^{h}\right) \mu} \tag{2}
\end{equation*}
$$

The right hand side of (2) is minimal for $h=h_{0}$ with $h_{0}=\ln (1+\delta)$. Inserted into (2) we obtain

$$
\operatorname{Pr}[X \geq(1+\delta) \mu] \leq(1+\delta)^{-(1+\delta) \mu} \cdot e^{\delta \cdot \mu}=\left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{\mu}
$$

The inequality for $\operatorname{Pr}[X \leq(1-\delta) \mu]$ is an exercise.
For more details on probability theory see, for example, [1].

References

[1] C. Scheideler. Probabilistic Methods for Coordination Problems. HNI-Verlagsschriftenreihe 78, University of Paderborn, 2000. Siehe wwwcs.upb.de/cs/scheideler.

