
Advanced Distributed
Algorithms and Data Structures

Chapter 8: Logical Clocks

Christian Scheideler
Institut für Informatik

Universität Paderborn

Overview

• Basics of Logical Clocks
• Hybrid Logical Clocks
• Applications

WS 2016 2Chapter 8

Logical Clocks
A logical clock is a mechanism for capturing chronological
and causal relationships of events in a distributed system.
In our case:
• events cause executions of actions (recall that actions

are of the form 〈event〉 → 〈commands〉)

WS 2016 Chapter 8 3

process 1

process 2

process 3

process 4

Logical time

: events

Logical Clocks
A logical clock is a mechanism for capturing chronological
and causal relationships of events in a distributed system.
In our case:
• two events a and b are directly causally related () if

a happened directly before b in the same process or a
triggered b by a message

WS 2016 Chapter 8 4

process 1

process 2

process 3

process 4

Logical time

: events

: causal
relationship

a b

a
b

Logical Clocks
A logical clock is a mechanism for capturing chronological
and causal relationships of events in a distributed system.
In our case:
• two events a and b are causally related if there is a

directed path of direct causal relationships from a to b

WS 2016 Chapter 8 5

process 1

process 2

process 3

process 4

Logical time

: events

: causal
relationship

a

b

Logical Clocks
Definition 8.1 (Lamport): The causal relation „→“ on
the set of events is the smallest relation satisfying the
following three conditions:
1. If a is happening directly before b in the same

process, then a→b.
2. If b is triggered by a message from a, then a→b.
3. If a→b and b→c then a→c.
Two events a and b are said to be concurrent if neither
a→b nor b→a.

Clock condition for any logical clock implementation C:
If a→b then C(a)<C(b).

WS 2016 Chapter 8 6

Logical Clocks
Clock condition for any logical clock implementation C:
If a→b then C(a)<C(b).

From Definition 8.1 it follows that a logical clock C satis-
fying the clock condition must satisfy the following two
requirements:
1. If a is happening directly before b in the same process,

then C(a)<C(b).
2. If b is triggered by a message from a, then C(a)<C(b).

Simplest solution: Lamport clock L

WS 2016 Chapter 8 7

Logical Clocks
Lamport clock L:
• Each process i maintains a clock Li starting with 0.
• For an event a happening in process i, the Lamport

clock L(a) of a is defined as the clock value Li of
process i at the beginning of a.

Rules in order to satisfy conditions 1 and 2 in Def. 8.1:
• Each process i increments Li between any two

successive events.
• Every message m triggered by event a contains a

timestamp Tm=L(a). Upon processing a message m,
process i sets Li:=max{Li,Tm+1}.

WS 2016 Chapter 8 8

Logical Clocks
In our case: an event triggers an action execution.
Recall that we consider the following types of actions:
1. Triggered by a local state:

〈name〉: 〈predicate〉 → 〈commands〉
2. Triggered by a local/remote call:

〈name〉(〈parameters〉) → 〈commands〉

Clock update rules for each process i:
• Whenever an action of type 1 is to be executed, set

Li:=Li+1.
• Whenever an action ot type 2 is to be executed due to

a message m, set Li:=max{Li,Tm}+1.

WS 2016 Chapter 8 9

Logical Clocks
Example:

Problem: Answering „What was the state of the system at logical
time x?“ may result in a system state consisting of process
states that differ quite significantly w.r.t. their corresponding
physical times.

WS 2016 Chapter 8 10

process 1

process 2

process 3

process 4

(Ideal) physical time

: action
execution

1

1
0

2

2

2

2

4

3

4 5

5

5

4

6

: causal
relationship

0

0

0

1

3

Logical Clocks
Example:

For example: „What was the state of the system at (logical)
time 4?“

WS 2016 Chapter 8 11

: action
execution

1

1

2

2

2

2

4

3

4 5

4

5

4

6

: causal
relationship

1

3

(Ideal) physical time

process 1

process 2

process 3

process 4

0

0

0

0

Logical Clocks
Example:

Problem: Lamport clocks are not robust against adversarial
attacks if they have a finite domain since the adversary can
cause an overflow.

WS 2016 Chapter 8 12

process 1

process 2

process 3

process 4

Logical time

: action
execution

1

10
2

2

2

2

1000001

3

1000001 1000002

1000002

1000002

4

1000003

: causal
relationship

0

0

0

1

1000000

Overview

• Basics of Logical Clocks
• Hybrid Logical Clocks
• Applications

WS 2016 13Chapter 8

Hybrid Logical Clocks
Basic idea: combine physical clocks with Lamport clocks in order
to obtain so-called Hybrid Logical Clocks (HLC).

Definition 8.2:
• PC(a): physical clock value of the process at the beginning of

event a
• C(a): physical clock value of event a
• L(a): logical clock value of event a
• pred(a): event preceding event a in its process
• HLC(a):=(C(a),L(a)): hybrid clock value of event a
• We define: HLC(a)<HLC(b) if and only if either C(a)<C(b) or

C(a)=C(b) and L(a)<L(b).

Clock condition in this case: if a→b then HLC(a)<HLC(b).

WS 2016 Chapter 8 14

Hybrid Logical Clocks
Rules for computing HLC(a):
• Action a triggered by a local state:

C(a):=max{C(pred(a)), PC(a)}
if C(a)=C(pred(a)) then L(a):=L(pred(a))+1

else L(a):=0

• Action a triggered by a message m:

C(a):=max{C(pred(a)), PC(a)}
if C(a)=C(pred(a)) then L(a):=L(pred(a))+1

else L(a):=0
if C(a)<C(Tm) or (C(a)=C(Tm) and L(a)≤L(Tm)) then

C(a):=C(Tm)
L(a):=L(Tm)+1

Certainly, these rules satisfy conditions 1 and 2 in Definition 8.1.

WS 2016 Chapter 8 15

Hybrid Logical Clocks
Extreme cases:
Case 1:
• physical clocks are perfectly synchronized
• messages have a delay >0
Then HLC(a)=PC(a) for all events a.

Case 2:
• physical clocks ignored / unavailable (PC(a):=0 in this case)
• messages have arbitrary non-negative delays
Then HLC(a)=L(a) (which is identical with the Lamport clock value) for
all events a.

All other cases: HLC(a) somehow between being a physical clock and
a logical clock value.

WS 2016 Chapter 8 16

Hybrid Logical Clocks
Consider some ideal clock IC unknown to the processes that never
halts or runs backwards but may proceed at different speeds.

Theorem 8.3: If there is an ideal clock so that the physical clocks of the
processes are within an additive ε of the ideal clock value, then for any
event a, C(a) is within an additive ε of the ideal clock value.
Proof:
• IC(a): ideal clock value at the beginning of event a.
• PC(a): physical clock value at the beginning of event a.
• Note that the events can be topologically ordered based on their

causal relationships. We prove by induction on this ordering that
Theorem 8.3 holds for every event.

• Induction start:
For the first event a in each process, C(a) is set to PC(a) and since
|PC(a)-IC(a)|≤ε, also |C(a)-IC(a)|≤ε.

WS 2016 Chapter 8 17

Hybrid Logical Clocks
Theorem 8.3: If there is an ideal clock so that the physical clocks of the processes are within an
additive ε of the ideal clock value, then for any event a, C(a) is within an additive ε of the ideal
clock value.
Proof:
Induction step:
Case 1: event a triggered by a local state.
• By induction, we know that |C(pred(a))-IC(pred(a))|≤ε.
• We also know that |PC(a)-IC(a)|≤ε, IC(pred(a))≤IC(a), and C(a) is set to

max{C(pred(a)),PC(a)}.
• Case 1a: PC(a)<C(pred(a)).

Then C(a) = C(pred(a)) > PC(a). Hence,
(*) IC(a)-C(a) < IC(a)-PC(a) ≤ ε.
On the other hand, IC(a)≥IC(pred(a)). Hence,
(**) C(a)-IC(a) = C(pred(a))-IC(a) ≤ C(pred(a))-IC(pred(a)) ≤ ε.
From (*) and (**) it follows that |C(a)-IC(a)|≤ε.

• Case 1b: PC(a)≥C(pred(a)).
Then C(a)=PC(a). Thus, IC(a)-C(a) = IC(a)-PC(a) ≤ ε and C(a)-IC(a) = PC(a)-IC(a) ≤ ε ,
which implies that |C(a)-IC(a)|≤ε.

Case 2: event triggered by a message.
Exercise: also show |C(a)-IC(a)|≤ε for the case that event a is triggered by a message m.

WS 2016 Chapter 8 18

Hybrid Logical Clocks
Remarks:
• The assumption for the ideal clock in Theorem 8.3 can be

achieved under reasonable assumptions on message delays
(see the conjecture on slide 44 of Chapter 7).

• If the assumption of Theorem 8.3 holds, the state of the
system for some HLC-time is much closer correlated to the
physical time.

WS 2016 Chapter 8 19

process 1

process 2

process 3

process 4
: events

: HLC
time stamps

ideal clock time

Robust Hybrid Logical Clocks
Problem: HLC rules still not robust against adversarial attacks that produce
overflows or cause C(a) to significantly deviate from PC(a) for some events a.

Idea: put the processing of action a triggered by message m on hold until
PC(a)>C(Tm) so that very large C(Tm) or L(Tm) values do not cause overflows or
significant jumps of the C or L values of a compared to pred(a).
→ Message queue becomes priority queue based on C(Tm)-values.

A prerequisite of the idea to work is a robust physical clock synchronization
mechanism so that clocks of honest processes are not corrupted.

Remark: Recall that the median rule from Chapter 7 can be made very robust
against massive DoS attacks and even manipulations of clock values. Yet,
large message delays might cause a large ε in Theorem 8.3 over time, but in
the worst case the adversary can cause the physical clocks to deviate at most
by their natural drift when making message delays very large (see Chapter 7,
slide 44), which can be tolerated for quite some time due to the slow drift.

WS 2016 Chapter 8 20

Overview

• Basics of Logical Clocks
• Hybrid Logical Clocks
• Applications

WS 2016 21Chapter 8

Applications of HLCs
Assumptions:
• We use robust hybrid logical clocks.
• For all processes i, |PC(i)-IC|≤ε.
• All message delays are at most ε.

Applications:
• Snapshots
• Transactions

WS 2016 Chapter 8 22

Snapshots
Definition 8.4:
• State of a process: all data contained in it
• State of network: all messages currently in transit
• State of system: combination of all process states and the state of

the network
The state of a process is uniquely characterized by the sequence of
local events causing it. Given an event e and a process (resp. system)
state S, we say that S depends on e (or short, e∈S) if and only if e is
part of that state.

WS 2016 23Chapter 8

process 1

process 2

process 3

process 4
e1

0

0

0

0
e2 e3 e4 e5 S4=(e1,e2,e3,e4,e5)

e4∈S4

Snapshots
Definition 8.5: A system state S is consistent if for any
two events a and b with a→b: if b∈S then also a∈S.

Example:
events left to red curve form consistent system state

WS 2016 Chapter 8 24

process 1

process 2

process 3

process 4
e1

0

0

0

0 e2 e3 e4 e5

Snapshots
Definition 8.5: A system state S is consistent if for any
two events a and b with a→b: if b∈S then also a∈S.

Example:
events left to red curve do not form consistent system
state

WS 2016 Chapter 8 25

process 1

process 2

process 3

process 4
e1

0

0

0

0 e2 e3 e4 e5

Snapshots
Definition 8.5: A system state S is consistent if for any
two events a and b with a→b: if b∈S then also a∈S.

This means, for example, that whenever an event b is
triggered by a message from event a, then for a system
state to be consistent it should not happen that it
depends on b but not on a.

Snapshot problem: Record a consistent system state.

The recording of a system state is usually triggered by a
dedicated process called the observer.

WS 2016 Chapter 8 26

Snapshots
Assumptions:
• We have an HLC implementation.
• All processes keep track of the sequence of events (or more

precisely, the changes of their state caused by them) and their HLC-
values.

Snapshot algorithm:
1. Process P0 (the observer) selects some snapshot time T and

sends it to all other processes.
2. Every other process Pi sends the unique state back to P0

representing the sequence of all local events e with HLC-value
<(T,0).

The state in step 2 may either be constructed from the log of Pi´s
events or returned once Pi´ has had an event with HLC-value ≥(T,0).
Note that just waiting for the physical clock to be at least T does not
suffice since it might be adjusted backwards.

WS 2016 Chapter 8 27

Snapshots
Recall our assumptions:
1. We use robust hybrid logical clocks.
2. For all processes i, |PC(i)-IC|≤ε.
3. All message delays are at most ε.

Then it follows from Theorem 8.3:
• If items 1 and 2 hold, then for any snapshot, the time

difference of the states of the processes is just O(ε).
• If items 1-3 hold and the observer wants to have a

snapshot of the current time step, then only a rollback
of O(ε) steps of the other processors is needed for the
snapshot.

WS 2016 Chapter 8 28

Snapshots
Problem: high contention at the observer since the number of
processes resp. their states might be quite large.

Solution:
• Instead of the observer sending a message directly to all

processes, it can make use of more scalable broadcasting
techniques that are discussed in Chapter 10.

• In many applications (like a fire detection system) just some
aggregate value of the process states is needed. We refer to
Chapter 10 for techniques to compute such a value in a
scalable way.

• In other applications like a system rollback or establishing a
checkpoint for rollback, the states of the processes actually do
not have to be sent back to the observer but just
acknowledgements are needed.

WS 2016 Chapter 8 29

Snapshots
Problem: the current way of taking a snapshot is not sufficient to
perform a system rollback in order to continue its execution from that
snapshot. The reason is that messages in transit are not recorded by
the snapshot.

Possible solutions:
• Keep a log of messages that have not reached their final destination

yet. This, however, can be difficult in our TCM model as a message
may travel through various relays.

• Alternatively, one may send a snapshot message along each
outgoing relay of every process, and if the relays are guaranteed to
send their messages in FIFO order, a process knows that it has
received all messages sent before the snapshot once it receives the
snapshot message from each incoming connection. But this requires
all processes to be aware of the number of incoming connectings
into some relay. Maybe, some TCM-layer support is justified here?

WS 2016 Chapter 8 30

Applications of HLCs
Assumptions:
• We use robust hybrid logical clocks.
• For all processes i, |PC(i)-IC|≤ε.
• All message delays are at most ε.

Applications:
• Snapshots
• Transactions

WS 2016 Chapter 8 31

Transactions
Transaction processing links multiple individual events in a single, indivisible
event called transaction.

A transaction is usually rooted at a single event (that triggered it) which might
be part of another transaction (like event a in the example).

WS 2016 Chapter 8 32

process 1

process 2

process 3

process 4

a

Transactions
Transaction processing links multiple individual events in a single, indivisible
event called transaction.

Definition 8.6:
• Given a transaction T, let PT be the set of all processes that contain at least

one of the events of T.
• Given two transactions T and T´, we say that T happens before T´ (or short,

T→T´) if there are events a∈T and b∈T´ with a→b.
• Given a system state S and transaction T, we say that S depends on T if

there is an event a∈T with a∈S.

Definition 8.7: Suppose that all events in a system are associated with
transactions. (In the simplest case, a transaction just consists of a single
event.) A system state S is called valid if
• Atomicity: For all transactions T that S depends on, all events in T must be

in S.
• Isolation: There are no two transactions T and T´ with T→T´ and T´→T.
A valid state is called consistent if if for any two transactions T and T´ with
T→T´: if T´∈S then also T∈S.
WS 2016 Chapter 8 33

Transactions
First idea: reduce the problem of processing transactions to the mutual
exclusion problem (see Chapter 6).

Basic protocol for transaction T:
1. Send LOCK(T) requests to all processes in PT (with a probability

controlled by a fair MIMD protocol like in Chapter 6).
2. If ACK(T) replies are obtained from all processes in PT (before the

next attempt to send out LOCK(T) requests), then continue with
step 3. Otherwise, send RELEASE(T) messages to all processes
in PT to release the locks (instead of sending LOCK(T) requests).

3. Process the transaction. Once all of its events have been
processed, send RELEASE(T) messages to all processes in PT.

A process only replies with an ACK(T) if it is currently not locked and
received only one LOCK request.

Problem: the success probability might be very small (if |PT| is large),
and if a process fails, locks will not be released.

WS 2016 Chapter 8 34

Transactions
Problem: the success probability might be very small

Solution:
• Suppose that all information in a process is organized in

independent units called objects, i.e., the set of operations (read,
write, insert, delete,…) specified for each of these objects does not
require access to any of the other objects.

• Also, suppose that we know in advance which objects need to be
accessed by a transaction (which is often the case).

• Then a transaction T only requires locks for the objects accessed by
it, and if there is no concurrent locking request for one of these
objects resp. none of the objects is currently locked, the process can
return an ACK(T).

Example: transactions transfer money between bank accounts

WS 2016 Chapter 8 35

Transactions
Problem: if a process fails, the locks will not be released.

Solution:
• Suppose that we know how much time a transaction

needs (see Solution 2 on slide 8 of Chapter 7 to obtain
a good estimate over time).

• Then it suffices if the process that wants to execute
transaction T just asks all processes in PT to set a lock
for a certain HLC-time frame.

Problem: How do processes in PT learn that transaction
T was successful?

WS 2016 Chapter 8 36

Transactions
Problem: How do processes in PT learn that transaction T was
successful?

Basic protocol:
1. Send LOCK(T,I) requests with HLC-interval I to all processes in PT

(with a probability controlled by a fair MIMD protocol like in
Chapter 6).

2. If ACK(T) replies are obtained from all processes in PT by the
beginning of I, continue with step 3. Otherwise, send RELEASE(T)
messages to all processes in PT to release the locks.

3. Process the transaction. If all of its events have been processed
within interval I, send COMMIT(T) messages to all processes in
PT. Otherwise, send UNDO(T) to all processes in PT.

We will talk in more detail about transactions in Chapter 11.

WS 2016 Chapter 8 37

Transactions
Recall our assumptions:
1. We use robust hybrid logical clocks.
2. For all processes i, |PC(i)-IC|≤ε.
3. All message delays are at most ε.

Then it follows from Theorem 8.3:
• If items 1-3 hold, then the starting point of the proposed

transaction interval just has to be O(ε) steps in the future to
receive the acknowledgements in time.

• Also, if items 1-3 hold, and any transaction requires much
more than O(ε) time, then a rollback of events due to
UNDO(T) requests will affect the events of at most one
transaction succeeding T in any of the processes in PT.
Why?

WS 2016 Chapter 8 38

Questions?

WS 2016 39Chapter 8

	Advanced Distributed Algorithms and Data Structures� �Chapter 8: Logical Clocks
	Overview
	Logical Clocks
	Logical Clocks
	Logical Clocks
	Logical Clocks
	Logical Clocks
	Logical Clocks
	Logical Clocks
	Logical Clocks
	Logical Clocks
	Logical Clocks
	Overview
	Hybrid Logical Clocks
	Hybrid Logical Clocks
	Hybrid Logical Clocks
	Hybrid Logical Clocks
	Hybrid Logical Clocks
	Hybrid Logical Clocks
	Robust Hybrid Logical Clocks
	Overview
	Applications of HLCs
	Snapshots
	Snapshots
	Snapshots
	Snapshots
	Snapshots
	Snapshots
	Snapshots
	Snapshots
	Applications of HLCs
	Transactions
	Transactions
	Transactions
	Transactions
	Transactions
	Transactions
	Transactions
	Foliennummer 39

