Advanced Distributed
 Algorithms and Data Structures
 Chapter 9: Dynamic Overlay Networks

Christian Scheideler
Institut für Informatik
Universität Paderborn

Model and Basic Primitives

A knows (IP address, MAC address,... of) resp. has access autorization for B : network can send message from A to B High-level view:
A knows $B \Rightarrow$ overlay edge (A, B) from A to $B \quad(A \longrightarrow B)$
Set of all overlay edges forms directed graph known as overlay network.

Model and Basic Primitives

- Overlay network established by processes:

- Graph representation:

- Edge $A \rightarrow B$ means: A knows / has access to B

Model and Basic Primitives

Relay graph $G=\left(\mathrm{V}, \mathrm{E}_{\mathrm{L}} \cup \mathrm{E}_{\mathrm{M}}\right)$:

- $V=R \cup P$, where R is the set of relays and P is the set of processes
- E_{L} (explicit edges): set of edges (v, w) where either ($v \in P$ and $w \in R$), or ($v \in R$ and $w \in R$), or $(v \in R$ and $w \in P)$

- E_{M} (implicit edges): set of edges (v, w) where $v \in P$ and $w \in R$, which represents a message in transit to v with a reference to relay w

Model and Basic Primitives

Asynchronous message passing

- all messages are eventually delivered
- but no FIFO delivery guaranteed

Problem

Problems:

- Processes continuously enter and leave the system.
- Processes might get faulty.

We need overlay networks that can handle that.
Basic approaches:

- Proactive: protect an overlay network from getting into an illegal state
- Reactive: make sure an overlay network can recover from any illegal state
\rightarrow self-stabilizing overlay networks

Overview

- Self-stabilization
- Self-stabilizing clique
- Self-stabilizing diameter 2 graphs

Self-Stabilization

- State of a process: all data contained in it
- State of network: all messages currently in transit
- State of system: combination of the states of all processes and the state of the network

Computational problem P:
Given: initial system state S
Goal: eventually reach a system state $S^{\prime} \in L_{p}(S)$
$\left(L_{P}(S)\right.$: set of all legal states of S w.r.t. P)
Example: Sorting problem
Given: any sequence of numbers
Goal: eventually reach a sorted sequence of numbers

Self-Stabilization

- Simplifying assumption: in the entire system only one action can be executed at a time (globally atomic)
- Computation: potentially infinite sequence of system states $\mathrm{s}_{0}, \mathrm{~s}_{1}, \mathrm{~s}_{2}, \ldots$, where state $\mathrm{s}_{\mathrm{i}+1}$ is reached from s_{i} by executing some action
- Simple for a formal analysis, but not realistic

Self-Stabilization

- Simplifying assumption: in the entire system only one action can be executed at a time (globally atomic)
- Computation: potentially infinite sequence of system states $\mathrm{s}_{0}, \mathrm{~s}_{1}, \mathrm{~s}_{2}, \ldots$, where state $\mathrm{s}_{\mathrm{i}+1}$ is reached from s_{i} by executing some action
- In reality:

Self-Stabilization

More realistic assumption: in every process only one action can be executed at a time (locally atomic)

Self-Stabilization

More realistic assumption: in every process only one action can be executed at a time (locally atomic)

Suppose that whenever a process is idle, its state does not change (i.e., there are no external changes affecting the state of a process like a physical clock). Then the following theorem holds.

Theorem 9.1: Within our process and network model, every finite locally atomic action execution can be transformed into a globally atomic action execution with the same final state.
\rightarrow All possible outcomes can be covered by globally atomic action executions.
\rightarrow "No bad globally atomic action execution" implies „no bad locally atomic action execution"

Self-Stabilization

Theorem 9.1: Within our process and network model, every finite locally atomic action execution can be transformed into a globally atomic action execution with the same final state.
Proof:

- Recall that an action only depends on the local state and potentially the message that triggered it and can only access the local variables of the executing process.
- Consider the graph $G=(V, E)$, where V represents the set of all executed actions and (A, B) is an edge in E if and only if action A happened directly before action B in the same process or B was triggered by a message from A.
- For each edge $(A, B) \in E$ it holds that B can only start after A has started. Hence, G is acyclic (i.e., G has no directed cycle).
- Therefore, the nodes in G can be brought into a topological order (i.e., for all $(A, B) \in E, A<B)$. It can be shown that when performing a globally atomic action execution in this order, it is a valid action execution, and the final state is the same as the one reached by the locally atomic action execution. (Proof: exercise)

Self-Stabilization

Illustration of Theorem 9.1:

- Locally atomic execution:

- numbers: topological order (= order in which actions are executed in globally atomic action execution)

Self－Stabilization

When does a process execute an action？
\rightarrow We assume fairness，i．e．，no message and no action tiggered by a local predicate that is inifinitely often true has to wait infinitely long for its processing．

Action of type \langle name $\rangle(\langle$ parameters $\rangle) \rightarrow\langle$ commands \rangle ：
－Triggered by local call by another action A：immediately executed（belongs to execution of A ）
－Triggered by message：message is eventually processed，so corresponding action is eventually executed．

Action of type＜name〉：＜predicate〉 $\rightarrow\langle$ commands〉：
－Eventual execution only guaranteed if its predicate is true infinitely often（like the predicate true in timeout）．

Self-Stabilization

Computational problem P :
Given: initial system state S
Goal: eventually reach legal system state $S^{\prime} \in L_{p}(S)$ $\left(L_{p}(S)\right.$: set of all legal states of S w.r.t. P)

Assumptions:

- globally atomic execution
- fairness (but order of executions might be determined by an adversary)

Definition 9.2: A system is self-stabilizing w.r.t. P if the following conditions hold under the assumption that the system does not undergo external changes or faults:

1. Convergence: For all initial system states S and any fair, globally atomic action execution, eventually a legal state $S^{\prime} \in L_{p}(S)$ is reached.
2. Closure: For all legal states $S \in L_{p}(S)$, any follow-up state S^{\prime} is also legal.

Self-Stabilization

Definition 9.2: A system is self-stabilizing w.r.t. P if the following conditions hold under the assumption that the system does not undergo external changes or faults:

1. Convergence: For all initial system states S and any fair, globally atomic action execution, eventually a legal state $S^{\prime} \in L_{p}(S)$ is reached.
2. Closure: For all legal states $S \in L_{p}(S)$, any follow-up state S^{\prime} is also legal.

Self-Stabilization

Definition 9.2: A system is self-stabilizing w.r.t. P if the following conditions hold under the assumption that the system does not undergo external changes or faults:

1. Convergence: For all initial system states S and any fair, globally atomic action execution, eventually a legal state $S^{\prime} \in L_{p}(S)$ is reached.
2. Closure: For all legal states $S \in L_{p}(S)$, any follow-up state S^{\prime} is also legal.

Remark: The convergence requirement has to be taken literally. ALL initial system states have to be considered, i.e., one cannot assume a well-initialized system state. Initially, the process states and the message might be corrupted in an arbitrary way. This complicates the design of self-stabilizing systems.

Overview

- Self-stabilization
- Self-stabilizing clique
- Self-stabilizing diameter 2 graphs

Self-stabilizing Clique

Legal state:

Operations:

- Join(v): add process v to clique
- Leave(): remove itself from clique
- Search(id): search for process with ID id

Clique

Variables within v:

- id: ID of v
- in: incoming relay of v
- $\mathrm{N} \subseteq \mathrm{V}$: current neighbor set of v (represented by a set of outgoing relays)
- D: set of to-be-delegated neighbors of v (due to indirect connections, which we do not want to have)

Clique

Variables within v:

- id: ID of v
- in: incoming relay of v
- $\mathrm{N} \subseteq \mathrm{V}$: current neighbor set of v (represented by a set of outgoing relays)
- D: set of to-be-delegated neighbors of v (due to indirect connections, which we do not want to have)

Legal state:

- For any process v let the (direct) neighborhood $\Gamma(\mathrm{v})$ of \vee be the set of all direct connections in v.N. (i.e., for any relay $r \in N$, there is a direct link from r to the r.sink).
- A state is legal if and only if $U_{v \in V} \Gamma(v)$ forms a clique.

Clique

Naive idea for building a clique:
Every process u continuously introduces itself and all of its neighbors to all of its neighbors.

Problem: very high work in legal state!

Clique

Better idea:

Continuously, every process v selects a random pair of (relays to) processes $u, w \in v . N$ or itself and safely introduces u to w. w will then safely introduce itself to u.

Build-Clique Protokoll

timeout: true \rightarrow
for all $\mathrm{v} \in \mathrm{N}$ with v redundant or not v .direct do $\mathrm{N}:=\mathrm{N} \backslash\{\mathrm{v}\} ; \mathrm{D}:=\mathrm{D} \cup\{\mathrm{v}\}$
$\mathrm{u}:=\mathrm{random}(\mathrm{N})$
$w:=r a n d o m(N \cup\{i n\})$
w \leftarrow ask-for-intro(u)
for all $v \in D$ with not v.incoming do
$\mathrm{V} \leftarrow$ introduce(in)
delete v
ask-for-intro(u) \rightarrow
\{ u is newly created, so no incoming links \}
if u. sink \neq in then
$u \leftarrow$ introduce (in)
delete u
introduce $(w) \rightarrow$
\{ w is newly created, so no incoming links \}
if $w . \sin k \neq i n$ and w is not redundant in N then
if w.direct then $N:=N \cup\{W\}$ else $D:=D \cup\{W\}$
else
delete w

CiIOUE

Theorem 9.3 (Convergence): For any weakly connected relay graph, the Build-Clique protocol eventually reaches a legal state.
Proof:

- Certainly, the Build-Clique protocol preserves weak connectivity.
- Also, eventually we reach a state in which for every node v, v. $\mathrm{D}=\varnothing$ and $\mathrm{v} . \mathrm{N}=\Gamma(\mathrm{v})$, and every introduce(w)-call still in transit will only establish a direct connection. Moreover, once this is reached, we will stay in such a state (Proof: exercise.)
- It remains to show that as long as $U_{\mathrm{v} \in \mathrm{V}} \Gamma(\mathrm{v})$ does not form a clique, the neighborhood of at least one node will eventually increase.
- Let u be a node whose neighborhood is not yet complete, and let w be a node that is not yet in its neighborhood.
- Since the graph is weakly connected, there is a (not necessarily directed) path from u to w.
- Let this path move along the nodes $u=v_{0}, v_{1}, \ldots, v_{k}=w$, and let this be a shortest possible path from u to w.
- If $\mathrm{k}=1$, then w already knows u , so the probability is >0 that w will introduce itself to u (which happens if in timeout, $\mathrm{w}=\mathrm{in}$).
- If $\mathrm{k}=2$, then we assume w.l.o.g. for $\mathrm{v}:=\mathrm{v}_{1}$ that v knows u and w (if not, this will eventually happen like in the case $\mathrm{k}=1$). Then again the probability is >0 that v will introduce w to u.
- If $\mathrm{k}>2$, then we reset w to v_{2} so that we are back to the case $\mathrm{k}=2$.

Clique

Theorem 9.4 (Closure): Once the processes have reached a legal state, they stay at a legal state.
Proof:
Once a relay with a direct connection has been added to N, it is never removed.

Adversarial processes:
The Build-Clique protocol works for any number of adversarial processes (if we call a state to be legal once the set of honest processes forms a clique), as long as the graph of the honest processes is initially weakly connected.

Clique

Join(u):

- Suppose that some process v that is already in the system executes Join(u), where u is a relay to some process that wants to join the clique.
- Then v simply adds u to N.
- The Build-Clique protocol will then eventually integrate u into the clique.

Clique

Theorem 9.5: If all processes operate in synchronous rounds and in each round every process does a random introduction, then it takes at most $O(n \log n)$ rounds until a new process u is fully integrated into a clique of n processes.
Proof:
Number of rounds until everybody knows u:

- Suppose that at the beginning of the given round, u is already known by a set S of d out of n processes.
- For any $v \in S$,
$\operatorname{Pr}[v$ introduces u to some $w \notin S]=1 /(n+1) \cdot(n-d) / n$
$\operatorname{Pr}[v$ does not introduce u to some $w \notin S]=1-1 /(n+1) \cdot(n-d) / n$
$\operatorname{Pr}[$ no $v \in S$ introduces u to some $w \notin S]=(1-1 /(n+1) \cdot(n-d) / n)^{d}$

$$
\begin{aligned}
& \leq 1-d /(n+1) \cdot(n-d) / n)+\binom{d}{2} \cdot(1 /(n+1) \cdot(n-d) / n)^{2} \\
& \leq 1-d /(2(n+1)) \cdot(n-d) / n
\end{aligned}
$$

Clique

Theorem 9.5: If all processes operate in synchronous rounds and in each round every process does a random introduction, then it takes at most $O(n \log n)$ rounds until a new process u is fully integrated into a clique of n processes.
Proof:
Number of rounds until everybody knows u (continued):

- Hence,
$\operatorname{Pr}[u$ is introduced to at least one $w \notin S] \geq d(n-d) /(2 n(n+1))$
- Let $p:=\operatorname{Pr}[u$ is introduced to at least one $w \notin S]$. Then it holds (exercise):
$E[\# r o u n d s$ until intro to some $w \notin S]=1 / p \leq 2 n(n+1) /(d(n-d))$
- Therefore,
$\mathrm{E}[\#$ rounds until everybody knows u]
$\leq \Sigma_{\mathrm{d}=1}{ }^{\mathrm{n}-1} \mathrm{E}[\#$ rounds until intro to some $\mathrm{w} \notin \mathrm{S}]$
$=\Sigma_{\mathrm{d}=1} \mathrm{n}-11 / \mathrm{p}=\mathrm{O}\left(\Sigma_{\mathrm{i}=1}^{\mathrm{n} / 2} \mathrm{n} / \mathrm{i}\right)=\mathrm{O}(\mathrm{n} \ln \mathrm{n})$

Clique

Theorem 9.5: If all processes operate in synchronous rounds and in each round every process does a random introduction, then it takes at most $O(\mathrm{n} \log \mathrm{n})$ rounds until a new process u is fully integrated into a clique of n processes.
Proof:
Number of rounds until u knows everybody: exercise
Speeding up the protocol:

- Process u gives v feedback whether v introduced it to a new process or not.
- If so, this raises v's probability to make another proposal to u, otherwise it decreases v's probability (similar to contention resolution).

Clique

Leave(): we assume that a process v can only initiate Leave for itself
Simplest solution: process v just leaves the system. Since the clique has a very high expansion, there shouldn't be any danger for the connectivity of the rest.

Problem: a clique may not have been reached yet!

Solution idea:

- v does not let any new process connect to it.

- v tries to reverse all existing connections to it so that it does not have incoming connections any more.
- Once v does not have any incoming connections, it tries to get rid of all outgoing connections except one (the so-called anchor), and once it has succeeded with that, it leaves.

Cilioue

Variables needed for Leave operation:

- leaving: Boolean variable that indicates if the process wants to leave the system. Initially, it is set to false.
- a-out: relay to an anchor process, which is used by leaving processes. The variable can only be used once leaving is true, and initially it is set to \perp.
- a-in: incoming relay from current anchor. Like a-out, it can only be used once leaving is true, and initially it is set to \perp.
- D: set of relays that can be delegated away (once they have no incoming connections any more). Initially, it is set to \varnothing.

Leave operation:
Leave() \rightarrow
leaving:=true
The rest is handled by an extension of Build-Clique.

CIIOUE

Solution to „, does not let any new process connect to it":
timeout: true \rightarrow
for all $v \in N$ with v redundant or not v.direct do
$\mathrm{N}:=\mathrm{N} \backslash\{\mathrm{v}\} ; \mathrm{D}:=\mathrm{D} \cup\{\mathrm{v}\}$
if not leaving then
u:=random(N)
w:=random $(N \cup\{i n\})$
Wセask-for-intro(u)
for all $v \in D$ with not v.incoming do
V↔introduce(in)
delete v
introduce(w) \rightarrow
if w.sink \neq in and w is not redundant in N then
if w.direct then $\mathrm{N}:=\mathrm{N} \cup\{\mathrm{w}\}$
else $D:=D \cup\{w\}$
else
delete w

$$
\text { ask-for-intro(u) } \rightarrow
$$

if u.sink \neq in then

```
        if not leaving then
```

 uடintroduce(in)
 delete u
 else
 \{ leaving: no new incoming link, instead keep link for reversal so that incoming links removed \}
 $\mathrm{N}:=\mathrm{N} \cup\{\mathrm{u}\}$
else delete u

Clique

Extension to „v tries to reverse all existing connections to it so that it does not have incoming connections any more":
timeout: true \rightarrow
beginning as before
else \{ leaving=true \}
for all $v \in N$ do
$\mathrm{N}:=\mathrm{N} \backslash\{\mathrm{v}\} ; \mathrm{D}:=\mathrm{D} \cup\{\mathrm{v}\}$
if not a-out.direct then $D:=D \cup\{a-o u t\} ;$ a-out: $=\perp$
for all $v \in D$ with not v.incoming do
\{ get rid of links to itself \}
v↔ask-to-reverse(in)
delete v
if a-out $\neq \perp$ and not a-in.incoming then
\{ once no incoming anchor link, probe anchor again \}
a-out \leftarrow ask-to-reverse(a-in)
ask-for-intro(u) and introduce(w) as before

```
ask-to-reverse(out) \(\rightarrow\)
    for all \(v \in N\) with \(v . \operatorname{sink}=o u t . \operatorname{sink}\) do
        \(\mathrm{N}:=\mathrm{N} \backslash\{\mathrm{v}\} ; \mathrm{D}:=\mathrm{D} \cup\{\mathrm{v}\}\)
    if leaving then
        if a-out \(=\perp\) then
            out \(\leftarrow\) ask-to-reverse(in)
        else
            if out.sink=a-out.sink then
                \(D:=D \cup\{a-o u t\} ;\) a-out: \(=\perp\)
            else
                out \(\leftarrow\) reverse(a-out)
    else
        out \(\leftarrow\) reverse(in)
    delete out
```


CiIOUE

Solution to „once v does not have any incoming connections, it tries to get rid of all outgoing connections except one (the so-called anchor)":

```
ask-to-reverse(out) \(\rightarrow\)
    for all \(\mathrm{v} \in \mathrm{N}\) with v .sink=out.sink do
        \(\mathrm{N}:=\mathrm{N} \backslash\{\mathrm{v}\} ; \mathrm{D}:=\mathrm{D} \cup\{\mathrm{v}\}\)
    if leaving then
        if a-out \(=\perp\) then
            out \(\leftarrow\) ask-to-reverse(in)
        else
            if out.sink=a-out.sink then
            \(D:=D \cup\{a-o u t\} ;\) a-out:= \(\perp\)
            else
                out \(\leftarrow\) reverse(a-out)
    else
        out \(\leftarrow\) reverse(in)
    delete out
```

```
reverse(out) \(\rightarrow\)
    if not leaving then
        \(\mathrm{N}:=\mathrm{N} \cup\{\mathrm{out}\}\)
    else
    if a-out \(=\perp\) then
        if out.direct then
                a-out:=out
        else
            out \(\leftarrow\) ask-to-reverse(in)
            delete out
        else
            D:=D \(\cup\{o u t\}\)
```


Clique

Solution to „once v does not have any incoming connections, it tries to get rid of all outgoing connections except one (the so-called anchor)":

```
timeout: true }
    beginning as before
    else { leaving=true }
        if N=\varnothing and D=\varnothing and not in.incoming and not a-in.incoming and
        not a-out.incoming then
            { only a-out non-empty, so only one link left, which means there
            is no danger of disconnecting graph by removing process }
            stop
        for all v\inN do
            N:=N\{v};D:=D\cup{v}
    if not a-out.direct then
            D:=D\cup{a-out}; a-out:=\perp
    for all v\inD with not v.incoming do
        v\leftarrowask-to-reverse(in)
        delete v
    if a-out }\not=\perp\mathrm{ and not a-in.incoming then
        a-out\leftarrowask-to-reverse(a-in)
```


Clique

Search(sid):
if id=sid then „success"
if $\exists w \in N:$ w.id=sid then $w \leftarrow$ Search(sid) else „failure"

Problem: The convergence to a full clique is slow at the end because once a process knows almost everybody, the probability is small that it still learns about new processes, which may cause search failures.

Solution: As long as the destination has not been found, the message is forwarded to a random neighbor, but at most d times for a fixed, constant d.

Overview

- Self-stabilization
- Self-stabilizing clique
- Self-stabilizing diameter 2 graphs

Diameter 2 Graph

Variables within v:

- id: ID of v
- in: incoming relay of v
- $\mathrm{N} \subseteq \mathrm{V}$: current neighbor set of v (represented by a set of outgoing relays)
- D: set of to-be-delegated neighbors of v (due to indirect connections, which we do not want to have)

Diameter 2 Graph

Theorem 9.6: Every graph of size n and diameter D must have a degree of at least $\left\lfloor n^{1 / D}\right.$.

Proof: exercise

Hence, if we want to have a diameter 2 graph of size n, its degree must be at least $\sqrt{n-1}$.

Our goal: design a protocol for a self-stabilizing diameter 2 graph with degree $O(\sqrt{n})$. A useful lemma to achieve that is the following.

Lemma 9.7 (Birthday paradox): Suppose that we select k out of n balls uniformly and independently at random, where $\mathrm{k}=\mathrm{o}(\mathrm{n})$. Then the expected number of balls that is selected at least twice is

$$
(1 \pm 0(1)) \cdot k(k-1) /(2 n) .
$$

Diameter 2 Graph

Lemma 9.7 (Birthday paradox): Suppose that we select k out of n balls uniformly and independently at random, where $\mathrm{k}=\mathrm{o}(\mathrm{n})$. Then the expected number of balls that is selected at least twice is

$$
(1 \pm 0(1)) \cdot k(k-1) /(2 n) .
$$

Proof:

- Consider some fixed ball B.
- $\operatorname{Pr[B~not~selected]~}=(1-1 / n)^{k}$
- $\operatorname{Pr}[B$ selected once $]=k \cdot(1 / n) \cdot(1-1 / n)^{k-1}$
- Hence,
$\operatorname{Pr}[B$ selected at least twice]

$$
\begin{aligned}
& =1-(1-1 / n)^{k}-k \cdot(1 / n) \cdot(1-1 / n)^{k-1} \\
& =1-\left(1-k / n+\left(\frac{k}{2}\right)(1 / n)^{2} \pm O\left((k / n)^{3}\right)\right)-(k / n)\left(1-(k-1) / n \pm O\left((k / n)^{2}\right)\right) \\
& =(1 \pm 0(1)) \cdot k(k-1) /\left(2 n^{2}\right)
\end{aligned}
$$

- Thus,
$\mathrm{E}[\#$ balls selected at least twice $]=(1 \pm \mathrm{o}(1)) \cdot \mathrm{k}(\mathrm{k}-1) /(2 \mathrm{n})$

Diameter 2 Graph

Lemma 9.7 (Birthday paradox): Suppose that we select k out of n balls uniformly and independently at random, where $\mathrm{k}=\mathrm{o}(\mathrm{n})$. Then the expected number of balls that is selected at least twice is

$$
(1 \pm 0(1)) \cdot k(k-1) /(2 n) .
$$

Basic approach:

- Keep sampling neighbors at a 2-hop distance uniformly at random.
- Record the number of samplings between events where a node has been selected twice. If this happens too often (compared to what the birthday paradox predicts for a targeted degree of $\sim \sqrt{n}$), reduce the degree. Otherwise, slowly increase the degree over time.

Conjecture: the approach eventually arrives at a random diameter 2 graph of degree $O(\sqrt{n})$.

Diameter 2 Graph

How should the degree be balanced?

- Let $\mathrm{m}=|\mathrm{N}|$.
- v_{i} and v_{j} are a twin: $v_{i} \cdot \sin k_{\bar{m}}=v_{j} \cdot \operatorname{sink}$
- $\operatorname{Pr}[$ there is a twin in $N] \leq(2) 1 / n=m(m-1) /(2 n)$
- $\quad N$ is small: $m \leq \sqrt{n} / 2$
- $\quad \operatorname{Pr}[$ there is a twin in a small N$] \leq 1 / 8$
- $\operatorname{Pr}[$ there is no twin in $N] \leq n(n-1) \ldots(n-m+1) / n^{m}$

$$
\begin{aligned}
& =(n / n) \cdot(n-1) / n \cdot(n-2) / n \cdot \ldots \cdot(n-m+1) / n \\
& =1 \cdot(1-1 / n) \cdot(1-2 / n) \cdot \ldots \cdot(1-(m-1) / n) \\
& \leq e^{0} \cdot e^{-1 / n} \cdot e^{-2 / n} \cdot \ldots \cdot e^{-(m-1) / n}=e^{-m(m-1) /(2 n)}
\end{aligned}
$$

- N is large: $m \geq 3 \sqrt{n}$
- $\operatorname{Pr}[$ there is no twin in a large N$] \leq 1 / 8$

Concrete approach:

- Organize N as FIFO queue
- For each dequeued node v of N :
- if v belongs to twin, delete \vee (reduces $|\mathrm{N}|$)
- else if N has a twin then replace v by a new random node (preserves $|N|$)
- else if N has no twin then add a new random node to N (increases $|\mathrm{N}|$)

Build-D2G Protokoll

timeout: true \rightarrow
for all $\mathrm{v} \in \mathrm{N}$ with not v . direct do
$\mathrm{N}:=\mathrm{N} \backslash\{\mathrm{v}\} ; \mathrm{D}:=\mathrm{D} \cup\{\mathrm{v}\}$
v :=dequeue(N)
if v is a twin then delete v
else
if N has a twin then
$D:=D \cup\{v\}\{$ replace v by random node $\}$ else
$\mathrm{V} \leftarrow$ ask-for-intro(in)
enqueue(N, v)
for all $v \in D$ with not v.incoming do
$\mathrm{V} \leftarrow$ ask-for-intro(in)
delete v
ask-for-intro(u) \rightarrow
if u.sink \neq in then
w:=random(N)
uŁintroduce(w)
delete u
introduce(w) \rightarrow
if w.sink \neq in then
w \leftarrow ask-for-connect(in)
delete w
ask-for-connect(u) \rightarrow
if u.sink \neq in then
$\mathrm{u} \leftarrow$ connect(in)
delete u
connect(w) \rightarrow
if w.sink \neq in then
$N:=N \cup\{w\}$
else
delete w

Diameter 2 Graph

ask-for-intro(u) \rightarrow if u. sink \neq in then w :=random(N) u \leftarrow introduce (w) delete u

introduce(w) \rightarrow
if w. sink \neq in then w \leftarrow ask-for-connect(in) delete w
ask-for-connect(u) \rightarrow if u.sink \neq in then
$u \leftarrow$ connect(in) delete u

```
connect(w) }
    if w.sink }=\mathrm{ in then
        N:=N\cup{w}
    else
            delete w
```


Questions?

