
Advanced Distributed
Algorithms and Data Structures
Chapter 9: Dynamic Overlay Networks

Christian Scheideler
Institut für Informatik

Universität Paderborn

Model and Basic Primitives

A knows (IP address, MAC address,… of) resp. has access
autorization for B : network can send message from A to B

High-level view:
A knows B ⇒ overlay edge (A,B) from A to B (A B)

Set of all overlay edges forms directed graph known as overlay
network.

A B
Communication network

(Internet, ad-hoc network,…)

WS 2016 Chapter 9 2

Model and Basic Primitives
• Overlay network established by processes:

• Graph representation:

• Edge A → B means: A knows / has access to B

nodes

edges

WS 2016 Chapter 9 3

Model and Basic Primitives
Relay graph G=(V,EL∪EM):
• V=R∪P, where R is the set of relays and P is the set of processes
• EL (explicit edges): set of edges (v,w) where either (v∈P and w∈R),

or (v∈R and w∈R), or (v∈R and w∈P)

• EM (implicit edges): set of edges (v,w) where v∈P and w∈R, which
represents a message in transit to v with a reference to relay w

WS 2016 4Chapter 4

r v r v

v w v w

Model and Basic Primitives
Asynchronous message passing

• all messages are eventually delivered
• but no FIFO delivery guaranteed

v w
M3 M2 M1

t0:

v w
M2

t1:

v w
M1

t2:

v w
M3

t3:

WS 2016 5Chapter 9

Problem
Problems:
• Processes continuously enter and leave the system.
• Processes might get faulty.
We need overlay networks that can handle that.

Basic approaches:
• Proactive: protect an overlay network from getting into

an illegal state
• Reactive: make sure an overlay network can recover

from any illegal state
→ self-stabilizing overlay networks

WS 2016 Chapter 9 6

Overview

• Self-stabilization
• Self-stabilizing clique
• Self-stabilizing diameter 2 graphs

WS 2016 7Chapter 9

Self-Stabilization
• State of a process: all data contained in it
• State of network: all messages currently in transit
• State of system: combination of the states of all processes

and the state of the network

Computational problem P:
Given: initial system state S
Goal: eventually reach a system state S´∈LP(S)

(LP(S): set of all legal states of S w.r.t. P)

Example: Sorting problem
Given: any sequence of numbers
Goal: eventually reach a sorted sequence of numbers

WS 2016 Chapter 9 8

Self-Stabilization
• Simplifying assumption: in the entire system only one

action can be executed at a time (globally atomic)
• Computation: potentially infinite sequence of system

states s0, s1, s2,…, where state si+1 is reached from si
by executing some action

• Simple for a formal analysis, but not realistic

time

A1

A2

s0 s1 s2 s3 s4 s5

A3 A4

A5

WS 2016 9Chapter 9

Self-Stabilization
• Simplifying assumption: in the entire system only one

action can be executed at a time (globally atomic)
• Computation: potentially infinite sequence of system

states s0, s1, s2,…, where state si+1 is reached from si
by executing some action

• In reality:

time

A1

A2

s0 s5

A3 A4

A5

WS 2016 10Chapter 9

More realistic assumption: in every process only one
action can be executed at a time
(locally atomic)

Self-Stabilization

time

A1

A2

s0 s5

A3 A4

A5

WS 2016 11Chapter 9

Self-Stabilization
More realistic assumption: in every process only one action can be

executed at a time
(locally atomic)

Suppose that whenever a process is idle, its state does not change
(i.e., there are no external changes affecting the state of a process
like a physical clock). Then the following theorem holds.

Theorem 9.1: Within our process and network model, every finite locally
atomic action execution can be transformed into a globally atomic
action execution with the same final state.

→ All possible outcomes can be covered by globally atomic action
executions.

→ „No bad globally atomic action execution“ implies „no bad locally
atomic action execution“

WS 2016 12Chapter 9

Self-Stabilization
Theorem 9.1: Within our process and network model, every finite locally atomic

action execution can be transformed into a globally atomic action execution
with the same final state.

Proof:
• Recall that an action only depends on the local state and potentially the

message that triggered it and can only access the local variables of the
executing process.

• Consider the graph G=(V,E), where V represents the set of all executed
actions and (A,B) is an edge in E if and only if action A happened directly
before action B in the same process or B was triggered by a message from
A.

• For each edge (A,B)∈E it holds that B can only start after A has started.
Hence, G is acyclic (i.e., G has no directed cycle).

• Therefore, the nodes in G can be brought into a topological order (i.e., for all
(A,B)∈E , A<B). It can be shown that when performing a globally atomic
action execution in this order, it is a valid action execution, and the final
state is the same as the one reached by the locally atomic action execution.
(Proof: exercise)

WS 2016 Chapter 9 13

Self-Stabilization
Illustration of Theorem 9.1:
• Locally atomic execution:

• numbers: topological order (= order in which actions are
executed in globally atomic action execution)

WS 2016 Chapter 9 14

Process 1

Process 2

Process 3

Process 4

Zeit

: action
execution

1

2

3 4

5

6

7

8

9

10 11

12

13

14

15

Self-Stabilization
When does a process execute an action?
→ We assume fairness, i.e., no message and no action tiggered

by a local predicate that is inifinitely often true has to wait
infinitely long for its processing.

Action of type 〈name〉(〈parameters〉) → 〈commands〉:
• Triggered by local call by another action A: immediately

executed (belongs to execution of A)
• Triggered by message: message is eventually processed, so

corresponding action is eventually executed.

Action of type 〈name〉: 〈predicate〉 → 〈commands〉:
• Eventual execution only guaranteed if its predicate is true

infinitely often (like the predicate true in timeout).

WS 2016 Chapter 9 15

Self-Stabilization
Computational problem P:
Given: initial system state S
Goal: eventually reach legal system state S´∈LP(S)

(LP(S): set of all legal states of S w.r.t. P)

Assumptions:
• globally atomic execution
• fairness (but order of executions might be determined by an adversary)

Definition 9.2: A system is self-stabilizing w.r.t. P if the following conditions hold
under the assumption that the system does not undergo external changes
or faults:

1. Convergence: For all initial system states S and any fair, globally atomic
action execution, eventually a legal state S´∈LP(S) is reached.

2. Closure: For all legal states S∈LP(S), any follow-up state S´ is also legal.

WS 2016 Chapter 9 16

Self-Stabilization
Definition 9.2: A system is self-stabilizing w.r.t. P if the following

conditions hold under the assumption that the system does not
undergo external changes or faults:

1. Convergence: For all initial system states S and any fair, globally
atomic action execution, eventually a legal state S´∈LP(S) is
reached.

2. Closure: For all legal states S∈LP(S), any follow-up state S´ is also
legal.

WS 2016 Chapter 9 17

Set of all system states

Set of all legal states

(1)

(2)

Self-Stabilization
Definition 9.2: A system is self-stabilizing w.r.t. P if the following

conditions hold under the assumption that the system does
not undergo external changes or faults:

1. Convergence: For all initial system states S and any fair,
globally atomic action execution, eventually a legal state
S´∈LP(S) is reached.

2. Closure: For all legal states S∈LP(S), any follow-up state S´
is also legal.

Remark: The convergence requirement has to be taken literally.
ALL initial system states have to be considered, i.e., one
cannot assume a well-initialized system state. Initially, the
process states and the message might be corrupted in an
arbitrary way. This complicates the design of self-stabilizing
systems.

WS 2016 Chapter 9 18

Overview

• Self-stabilization
• Self-stabilizing clique
• Self-stabilizing diameter 2 graphs

WS 2016 19Chapter 9

Self-stabilizing Clique
Legal state:

Operations:
• Join(v): add process v to clique
• Leave(): remove itself from clique
• Search(id): search for process with ID id

WS 2016 20Chapter 9

Clique
Variables within v:
• id: ID of v
• in: incoming relay of v
• N ⊆ V: current neighbor set of v (represented by a set of

outgoing relays)
• D: set of to-be-delegated neighbors of v (due to indirect

connections, which we do not want to have)

WS 2016 21Chapter 9

…
Join

Leave
Search

in
N
D

id

Clique
Variables within v:
• id: ID of v
• in: incoming relay of v
• N ⊆ V: current neighbor set of v (represented by a set of

outgoing relays)
• D: set of to-be-delegated neighbors of v (due to indirect

connections, which we do not want to have)

Legal state:
• For any process v let the (direct) neighborhood Γ(v) of v be

the set of all direct connections in v.N. (i.e., for any relay r∈N,
there is a direct link from r to the r.sink).

• A state is legal if and only if Uv∈V Γ(v) forms a clique.

WS 2016 22Chapter 9

Clique
Naive idea for building a clique:

Every process u continuously introduces itself and all of
its neighbors to all of its neighbors.

Problem: very high work in legal state!

WS 2016 Chapter 9 23

u

Clique
Better idea:

Continuously, every process v selects a random pair of
(relays to) processes u,w∈v.N or itself and safely intro-
duces u to w. w will then safely introduce itself to u.

WS 2016 24Chapter 9

u
wv

u

w

u
wv

u

w

u
wv

u

w

Build-Clique Protokoll
timeout: true →

for all v∈N with v redundant or not v.direct do
N:=N\{v}; D:=D∪{v}

u:=random(N)
w:=random(N∪{in})
w←ask-for-intro(u)
for all v∈D with not v.incoming do

v←introduce(in)
delete v

ask-for-intro(u) →
{ u is newly created, so no incoming links }
if u.sink≠in then

u←introduce(in)
delete u

introduce(w) →
{ w is newly created, so no incoming links }
if w.sink≠in and w is not redundant in N then

if w.direct then N:=N∪{w}
else D:=D∪{w}

else
delete w

WS 2016 25Chapter 9

u
wv

u

w

u
wv

u

w

Clique
Theorem 9.3 (Convergence): For any weakly connected relay graph, the Build-Clique protocol

eventually reaches a legal state.
Proof:
• Certainly, the Build-Clique protocol preserves weak connectivity.
• Also, eventually we reach a state in which for every node v, v.D=∅ and v.N=Γ(v), and

every introduce(w)-call still in transit will only establish a direct connection. Moreover, once
this is reached, we will stay in such a state (Proof: exercise.)

• It remains to show that as long as Uv∈V Γ(v) does not form a clique, the neighborhood of at
least one node will eventually increase.

• Let u be a node whose neighborhood is not yet complete, and let w be a node that is not
yet in its neighborhood.

• Since the graph is weakly connected, there is a (not necessarily directed) path from u to w.
• Let this path move along the nodes u=v0,v1,…,vk=w, and let this be a shortest possible path

from u to w.
• If k=1, then w already knows u, so the probability is >0 that w will introduce itself to u

(which happens if in timeout, w=in).
• If k=2, then we assume w.l.o.g. for v:=v1 that v knows u and w (if not, this will eventually

happen like in the case k=1). Then again the probability is >0 that v will introduce w to u.
• If k>2, then we reset w to v2 so that we are back to the case k=2.

WS 2016 26Chapter 9

Clique
Theorem 9.4 (Closure): Once the processes have

reached a legal state, they stay at a legal state.
Proof:

Once a relay with a direct connection has been
added to N, it is never removed.

Adversarial processes:
The Build-Clique protocol works for any number of
adversarial processes (if we call a state to be legal
once the set of honest processes forms a clique),
as long as the graph of the honest processes is
initially weakly connected.

WS 2016 27Chapter 9

Clique
Join(u):
• Suppose that some process v that is already in the system

executes Join(u), where u is a relay to some process that
wants to join the clique.

• Then v simply adds u to N.
• The Build-Clique protocol will then eventually integrate u into

the clique.

u v

WS 2016 28Chapter 9

Clique
Theorem 9.5: If all processes operate in synchronous rounds and in

each round every process does a random introduction, then it takes
at most O(n log n) rounds until a new process u is fully integrated
into a clique of n processes.

Proof:
Number of rounds until everybody knows u:
• Suppose that at the beginning of the given round, u is already

known by a set S of d out of n processes.
• For any v∈S,

Pr[v introduces u to some w∉S] = 1/(n+1) ⋅ (n-d)/n
Pr[v does not introduce u to some w∉S] = 1-1/(n+1) ⋅ (n-d)/n
Pr[no v∈S introduces u to some w∉S] = (1-1/(n+1) ⋅ (n-d)/n)d

≤ 1 - d/(n+1) ⋅ (n-d)/n) + () ⋅ (1/(n+1) ⋅ (n-d)/n)2

≤ 1 – d/(2(n+1)) ⋅ (n-d)/n

WS 2016 29Chapter 9

d
2

Clique
Theorem 9.5: If all processes operate in synchronous rounds and in

each round every process does a random introduction, then it takes
at most O(n log n) rounds until a new process u is fully integrated
into a clique of n processes.

Proof:
Number of rounds until everybody knows u (continued):
• Hence,

Pr[u is introduced to at least one w∉S] ≥ d(n-d)/(2n(n+1))
• Let p:=Pr[u is introduced to at least one w∉S] . Then it holds

(exercise):
E[#rounds until intro to some w∉S] = 1/p ≤ 2n(n+1)/(d(n-d))

• Therefore,
E[#rounds until everybody knows u]
≤ Σd=1

n-1 E[#rounds until intro to some w∉S]
= Σd=1

n-1 1/p = O(Σi=1
n/2 n/i) = O(n ln n)

WS 2016 30Chapter 9

Clique
Theorem 9.5: If all processes operate in synchronous rounds

and in each round every process does a random introduction,
then it takes at most O(n log n) rounds until a new process u
is fully integrated into a clique of n processes.

Proof:
Number of rounds until u knows everybody: exercise

Speeding up the protocol:
• Process u gives v feedback whether v introduced it to a new

process or not.
• If so, this raises v´s probability to make another proposal to u,

otherwise it decreases v´s probability (similar to contention
resolution).

WS 2016 31Chapter 9

Clique
Leave(): we assume that a process v can only initiate Leave for itself

Simplest solution: process v just leaves the system. Since the clique
has a very high expansion, there shouldn‘t be any danger for the
connectivity of the rest.

Problem: a clique may not have been
reached yet!

Solution idea:
• v does not let any new process connect to it.
• v tries to reverse all existing connections to it so that it does not

have incoming connections any more.
• Once v does not have any incoming connections, it tries to get rid of

all outgoing connections except one (the so-called anchor), and
once it has succeeded with that, it leaves.

v

WS 2016 32Chapter 9

Clique
Variables needed for Leave operation:
• leaving: Boolean variable that indicates if the process wants to leave the

system. Initially, it is set to false.
• a-out: relay to an anchor process, which is used by leaving processes. The

variable can only be used once leaving is true, and initially it is set to ⊥.
• a-in: incoming relay from current anchor. Like a-out, it can only be used

once leaving is true, and initially it is set to ⊥.
• D: set of relays that can be delegated away (once they have no incoming

connections any more). Initially, it is set to ∅.

Leave operation:

Leave() →
leaving:=true

The rest is handled by an extension of Build-Clique.

WS 2016 Chapter 9 33

Clique
Solution to „v does not let any new process connect to it“:

timeout: true →
for all v∈N with v redundant or

not v.direct do
N:=N\{v}; D:=D∪{v}

if not leaving then
u:=random(N)
w:=random(N∪{in})
w←ask-for-intro(u)
for all v∈D with not v.incoming do

v←introduce(in)
delete v

introduce(w) →
if w.sink≠in and w is not redundant in N then

if w.direct then N:=N∪{w}
else D:=D∪{w}

else
delete w

WS 2016 Chapter 9 34

ask-for-intro(u) →
if u.sink≠in then

if not leaving then
u←introduce(in)
delete u

else
{ leaving: no new incoming

link, instead keep link for
reversal so that incoming
links removed }

N:=N∪{u}
else delete u

Clique
Extension to „v tries to reverse all existing connections to it so that it does not have incoming
connections any more“:

timeout: true →
beginning as before
else { leaving=true }

for all v∈N do
N:=N\{v}; D:=D∪{v}

if not a-out.direct then
D:=D∪{a-out}; a-out:=⊥

for all v∈D with not v.incoming do
{ get rid of links to itself }
v←ask-to-reverse(in)
delete v

if a-out≠⊥ and not a-in.incoming then
{ once no incoming anchor link,
probe anchor again }

a-out←ask-to-reverse(a-in)

ask-for-intro(u) and introduce(w)
as before

WS 2016 Chapter 9 35

ask-to-reverse(out) →
for all v∈N with v.sink=out.sink do

N:=N\{v}; D:=D∪{v}
if leaving then

if a-out=⊥ then
out←ask-to-reverse(in)

else
if out.sink=a-out.sink then

D:=D∪{a-out}; a-out:=⊥
else

out←reverse(a-out)
else

out←reverse(in)
delete out

Clique
Solution to „once v does not have any incoming connections, it tries to get rid of
all outgoing connections except one (the so-called anchor)“:

ask-to-reverse(out) →
for all v∈N with v.sink=out.sink do

N:=N\{v}; D:=D∪{v}
if leaving then

if a-out=⊥ then
out←ask-to-reverse(in)

else
if out.sink=a-out.sink then

D:=D∪{a-out}; a-out:=⊥
else

out←reverse(a-out)
else

out←reverse(in)
delete out

WS 2016 Chapter 9 36

reverse(out) →
if not leaving then

N:=N∪{out}
else

if a-out=⊥ then
if out.direct then

a-out:=out
else

out←ask-to-reverse(in)
delete out

else
D:=D∪{out}

Clique
Solution to „once v does not have any incoming connections, it tries to get rid of all outgoing
connections except one (the so-called anchor)“:

timeout: true →
beginning as before
else { leaving=true }

if N=∅ and D=∅ and not in.incoming and not a-in.incoming and
not a-out.incoming then

{ only a-out non-empty, so only one link left, which means there
is no danger of disconnecting graph by removing process }

stop
for all v∈N do

N:=N\{v}; D:=D∪{v}
if not a-out.direct then

D:=D∪{a-out}; a-out:=⊥
for all v∈D with not v.incoming do

v←ask-to-reverse(in)
delete v

if a-out≠⊥ and not a-in.incoming then
a-out←ask-to-reverse(a-in)

WS 2016 Chapter 9 37

Clique
Search(sid):

if id=sid then „success“
if ∃w∈N: w.id=sid then w←Search(sid)

else „failure“

Problem: The convergence to a full clique is slow at the end
because once a process knows almost everybody, the
probability is small that it still learns about new processes,
which may cause search failures.

Solution: As long as the destination has not been found, the
message is forwarded to a random neighbor, but at most d
times for a fixed, constant d.

WS 2016 38Chapter 9

Overview

• Self-stabilization
• Self-stabilizing clique
• Self-stabilizing diameter 2 graphs

WS 2016 39Chapter 9

Diameter 2 Graph
Variables within v:
• id: ID of v
• in: incoming relay of v
• N ⊆ V: current neighbor set of v (represented by a set of

outgoing relays)
• D: set of to-be-delegated neighbors of v (due to indirect

connections, which we do not want to have)

WS 2016 40Chapter 9

…
Join

Leave
Search

in
N
D

id

Diameter 2 Graph
Theorem 9.6: Every graph of size n and diameter D must have a
degree of at least n1/D.
Proof: exercise

Hence, if we want to have a diameter 2 graph of size n, its degree must
be at least n -1.

Our goal: design a protocol for a self-stabilizing diameter 2 graph with
degree O(n). A useful lemma to achieve that is the following.

Lemma 9.7 (Birthday paradox): Suppose that we select k out of n balls
uniformly and independently at random, where k=o(n). Then the
expected number of balls that is selected at least twice is

(1±o(1))⋅k(k-1)/(2n).

WS 2016 Chapter 9 41

Diameter 2 Graph
Lemma 9.7 (Birthday paradox): Suppose that we select k out of n balls
uniformly and independently at random, where k=o(n). Then the
expected number of balls that is selected at least twice is

(1±o(1))⋅k(k-1)/(2n).
Proof:
• Consider some fixed ball B.
• Pr[B not selected] = (1-1/n)k

• Pr[B selected once] = k⋅(1/n)⋅(1-1/n)k-1

• Hence,
Pr[B selected at least twice]

= 1 - (1-1/n)k - k⋅(1/n)⋅(1-1/n)k-1

= 1 – (1-k/n+()(1/n)2±O((k/n)3)) – (k/n)(1-(k-1)/n±O((k/n)2))
= (1±o(1))⋅k(k-1)/(2n2)

• Thus,
E[#balls selected at least twice] = (1±o(1))⋅k(k-1)/(2n)

WS 2016 Chapter 9 42

k
2

Diameter 2 Graph
Lemma 9.7 (Birthday paradox): Suppose that we select k out of n balls
uniformly and independently at random, where k=o(n). Then the
expected number of balls that is selected at least twice is

(1±o(1))⋅k(k-1)/(2n).

Basic approach:
• Keep sampling neighbors at a 2-hop distance uniformly at random.
• Record the number of samplings between events where a node has

been selected twice. If this happens too often (compared to what the
birthday paradox predicts for a targeted degree of ~ n), reduce the
degree. Otherwise, slowly increase the degree over time.

Conjecture: the approach eventually arrives at a random diameter 2
graph of degree O(n).

WS 2016 Chapter 9 43

Diameter 2 Graph
How should the degree be balanced?
• Let m=|N|.
• vi and vj are a twin: vi.sink=vj.sink
• Pr[there is a twin in N] ≤ () 1/n = m(m-1)/(2n)
• N is small: m≤ n /2
• Pr[there is a twin in a small N] ≤ 1/8

• Pr[there is no twin in N] ≤ n(n-1)…(n-m+1)/nm

= (n/n) ⋅ (n-1)/n ⋅ (n-2)/n ⋅ … ⋅ (n-m+1)/n
= 1 ⋅ (1-1/n) ⋅ (1-2/n) ⋅ … ⋅ (1-(m-1)/n)
≤ e0 ⋅ e-1/n ⋅ e-2/n ⋅ … ⋅ e-(m-1)/n = e-m(m-1)/(2n)

• N is large: m ≥ 3 n
• Pr[there is no twin in a large N] ≤ 1/8

Concrete approach:
• Organize N as FIFO queue
• For each dequeued node v of N:

- if v belongs to twin, delete v (reduces |N|)
- else if N has a twin then replace v by a new random node (preserves |N|)
- else if N has no twin then add a new random node to N (increases |N|)

WS 2016 Chapter 9 44

m
2

Build-D2G Protokoll
timeout: true →

for all v∈N with not v.direct do
N:=N\{v}; D:=D∪{v}

v:=dequeue(N)
if v is a twin then delete v
else

if N has a twin then
D:=D∪{v} { replace v by random node }

else
v←ask-for-intro(in)
enqueue(N,v)

for all v∈D with not v.incoming do
v←ask-for-intro(in)
delete v

ask-for-intro(u) →
if u.sink≠in then

w:=random(N)
u←introduce(w)

delete u

WS 2016 45Chapter 9

introduce(w) →
if w.sink≠in then

w←ask-for-connect(in)
delete w

ask-for-connect(u) →
if u.sink≠in then

u←connect(in)
delete u

connect(w) →
if w.sink≠in then

N:=N∪{w}
else

delete w

Diameter 2 Graph
ask-for-intro(u) →

if u.sink≠in then
w:=random(N)
u←introduce(w)

delete u

introduce(w) →
if w.sink≠in then

w←ask-for-connect(in)
delete w

ask-for-connect(u) →
if u.sink≠in then

u←connect(in)
delete u

connect(w) →
if w.sink≠in then

N:=N∪{w}
else

delete w

WS 2016 Chapter 9 46

u v
v

in

u v

in

w

w

u v w

w

u v
u

w

w

in

u v w

w

u

in

w

Questions?

WS 2016 47Chapter 9

	Advanced Distributed Algorithms and Data Structures� �Chapter 9: Dynamic Overlay Networks
	Model and Basic Primitives
	Model and Basic Primitives
	Model and Basic Primitives
	Model and Basic Primitives
	Problem
	Overview
	Self-Stabilization
	Self-Stabilization
	Self-Stabilization
	Self-Stabilization
	Self-Stabilization
	Self-Stabilization
	Self-Stabilization
	Self-Stabilization
	Self-Stabilization
	Self-Stabilization
	Self-Stabilization
	Overview
	Self-stabilizing Clique
	Clique
	Clique
	Clique
	Clique
	Build-Clique Protokoll
	Clique
	Clique
	Clique
	Clique
	Clique
	Clique
	Clique
	Clique
	Clique
	Clique
	Clique
	Clique
	Clique
	Overview
	Diameter 2 Graph
	Diameter 2 Graph
	Diameter 2 Graph
	Diameter 2 Graph
	Diameter 2 Graph
	Build-D2G Protokoll
	Diameter 2 Graph
	Foliennummer 47

