# Advanced Distributed Algorithms and Data Structures 

WS 2016

## Homework Assignment 3

## Problem 1:

Prove the statement on slide 13: If in each round every node introduces all of its neighbors and itself to all of its neighbors, then just $O(\log n)$ communication rounds are needed (where $n$ is the number of nodes) till the clique is reached.

## Problem 2:

Prove the statement on slide 35: safe reversal preserves weak connectivity in a relay graph.

## Problem 3:

Suppose there is a $\operatorname{bind}(r, s)$ primitive that, for a local outgoing relay $r$ (i.e., $r$ only has an outgoing link but no incoming links) and a local sink relay $s$ (i.e., $s$ has no outgoing link), moves the outgoing link of $r$ to $s$ and drops $r$. Does that primitive preserve weak or strong connectivity in the relay graph? What would be possible advantages and disadvantages of such a primitive?

