# Fundamental Algorithms 

WS 2017

## Exercise Sheet 1

## Exercise 1:

Show the following statements:
a) $2 n^{3}-4 n+2 \in \Theta\left(n^{3}\right)$
b) $\sqrt{n} \in o(n)$
c) $o(n) \subset O\left(n^{2}\right)$
d) For arbitrary functions $f: \mathbb{N} \rightarrow \mathbb{N}$ and $g: \mathbb{N} \rightarrow \mathbb{N}$ the following holds:

$$
f(n) \in o(g(n)) \Leftrightarrow g(n) \in \omega(f(n))
$$

## Exercise 2:

Show the following statements for functions of $\mathbb{N} \rightarrow \mathbb{N}$ :
a) $\forall c \in \mathbb{N}: c \cdot f(n)=O(f(n))$
b) $f(n)+g(n)=\Omega(f(n))$
c) $g(n)=O(f(n)) \Rightarrow f(n)+g(n)=O(f(n))$
d) $O(f(n)) \cdot O(g(n))=O(f(n) \cdot g(n))$

## Exercise 3:

A sequence of $n$ operations is performed on some data structure. The $i$-th operation costs $i$, if $i=2^{k}$ for some $k \in \mathbb{N}_{0}$, and 1 , otherwise. Use the potential method to show that the cost of the sequence of operations is bounded by $O(n)$.
Hint: The states resulting from the cheap operations must accumulate enough potential such that the next expensive operation can be paid for by an appropriate drop of potential.

