Fundamental Algorithms

Chapter 4: Shortest Paths

Christian Scheideler
WS 2017

Shortest Paths

Central question: Determine fastest way to get from s to t.

Shortest Paths

Shortest Path Problem:

- directed/undirected graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$
- edge costs $\mathrm{c}: E \rightarrow \mathbb{R}$
- SSSP (single source shortest path): find shortest paths from a source node to all other nodes
- APSP (all pairs shortest path): find shortest paths between all pairs of nodes

Shortest Paths

$\mu(\mathrm{s}, \mathrm{v})$: distance between s and v
$\mu(s, v)= \begin{cases}\infty & \text { no path from } s \text { to } v \\ -\infty & \text { path of arbitrarily low cost from } s \text { to } v \\ \min \{c(p) \mid p \text { is a path from } s \text { to } v\}\end{cases}$

Shortest Paths

When is the distance $-\infty$?
If there is a negative cycle:

Shortest Paths

Negative cycle necessary and sufficient for a distance of $-\infty$.

Negative cycle sufficient:

Cost for i-fold traversal of C :
$c(p)+i \cdot c(C)+c(q)$
For $i \rightarrow \infty$ this expression approaches $-\infty$.

Shortest Paths

Negative cycle necessary and sufficient for a distance of $-\infty$.

Negative cycle necessary:

- 1 : minimal cost of a simple path from s to v
- suppose there is a non-simple path p from s to v with cost $c(r)<1$
- p non-simple: continuously remove a cycle C till we are left with a simple path
- since $c(p)<1$, there must be a cycle C with $c(C)<0$

Shortest Paths in Arbitrary Graphs

General Strategy:

- Initially, set $d(s):=0$ and $d(v):=\infty$ for all other nodes
- Visit nodes in an order that ensures that at least one shortest path from s to every v is visited in the order of its nodes
- For every visited v, update distances to nodes w with $(v, w) \in E$, i.e., $d(w):=\min \{d(w), d(v)+c(v, w)\}$

Bellman-Ford Algorithm

Consider graphs with arbitrary edge costs.
Problem: visit nodes along a shortest path from s to v in the right order

Dijkstra's algorithm cannot be used in this case any more.

Bellman-Ford Algorithm

Example:

Node v has wrong distance value!

Bellman-Ford Algorithm

Lemma 4.1: For every node v with $\mu(\mathrm{s}, \mathrm{v})>-\infty$ there is a simple path (without cycle!) from s to v of length $\mu(\mathrm{s}, \mathrm{v})$.

Proof:

- Path with cycle of length ≥ 0 : removing the cycle does not increase the path length
- Path with cycle of length <0 : distance from s is $-\infty$!

Bellman-Ford Algorithm

Conclusion: (graph with n nodes)
For every node v with $\mu(\mathrm{s}, \mathrm{v})>-\infty$ there is a shortest path along <n nodes to v .

Strategy: visit ($\mathrm{n}-1$)-times all nodes in the graph and update distances. Then all shortest paths have been considered.

Bellman-Ford Algorithm

Problem: detection of negative cycles

Conclusion: in a negative cycle, distance of at least one node keeps decreasing in each round, starting with a round $<n$

Bellman-Ford Algorithm

Lemma 4.2:

- No decrease of a distance in a round (i.e., $d[v]+c(v, w) \geq d[w]$ for all w):

Done because $d[w]=\mu(s, w)$ for all w

- Decrease of a distance even in n-th round (i.e., $\mathrm{d}[\mathrm{v}]+\mathrm{c}(\mathrm{v}, \mathrm{w})<\mathrm{d}[\mathrm{w}]$ for some w): There are negative cycles for all of these nodes, so node w has distance $\mu(s, w)=-\infty$. If this is true for w, then also for all nodes reachable from w.
Proof: exercise

Bellman-Ford Algorithm

Procedure BellmanFord(s: Nodeld)
$d=\langle\infty, \ldots, \infty>$: NodeArray of $\mathbb{R} \cup\{-\infty, \infty\}$
parent $=<\perp, \ldots, \perp>$: NodeArray of Nodeld
d[s]:=0; parent[s]:=s
for $\mathrm{i}:=1$ to $\mathrm{n}-1$ do // update distances for $\mathrm{n}-1$ rounds
forall $\mathrm{e}=(\mathrm{v}, \mathrm{w}) \in \mathrm{E}$ do
if $\mathrm{d}[\mathrm{w}]>\mathrm{d}[\mathrm{v}]+\mathrm{c}(\mathrm{e})$ then // better distance?
$d[w]:=d[v]+c(e) ;$ parent[w]:=v
forall $e=(v, w) \in E$ do $/ /$ still better in n-th round? if $\mathrm{d}[\mathrm{w}]>\mathrm{d}[\mathrm{v}]+\mathrm{c}(\mathrm{e})$ then infect(w)

Procedure infect(v) // set - ∞-distance starting with v if $\mathrm{d}[\mathrm{v}]>-\infty$ then
d[v]:=-
forall $(v, w) \in E$ do infect(w)

Bellman-Ford Algorithm

Runtime: $\mathrm{O}(\mathrm{n} \cdot \mathrm{m})$

Improvements:

- Check in each update round if we still have $d[v]+c[v, w]<d[w]$ for some $(v, w) \in E$. No: done!
- Visit in each round only those nodes w with some edge $(\mathrm{v}, \mathrm{w}) \in E$ where $\mathrm{d}[\mathrm{v}]$ has decreased in the previous round.

All Pairs Shortest Paths

Assumption: graph with arbitrary edge costs, but no negative cycles

Naive Strategy for a graph with n nodes: run n times Bellman-Ford Algorithm (once for every node as the source)

Runtime: $\mathrm{O}\left(\mathrm{n}^{2} \mathrm{~m}\right)$

All Pairs Shortest Paths

Better Strategy: Reduce n Bellman-Ford applications to n Dijkstra applications

Problem: we need non-negative edge costs
Solution: convert edge costs into nonnegative edge costs without changing the shortest paths (not so easy!)

All Pairs Shortest Paths

Counterexample to additive increase by c:

before

cost +1 everywhere

__ : shortest path

Johnson's Method

- Let $\phi: \vee \rightarrow \mathbb{R}$ be a function that assigns a potential to every node.
- The reduced cost of $e=(v, w)$ is:

$$
r(e):=c(e)+\phi(v)-\phi(w)
$$

Lemma 4.3: Let p and q be paths connecting the same endpoints in G. Then for every potential ϕ : $r(p)<r(q)$ if and only if $c(p)<c(q)$.

Johnson's Method

Lemma 4.3: Let p and q be paths connecting the same endpoints in G. Then for every potential ϕ :
$r(p)<r(q)$ if and only if $c(p)<c(q)$.
Proof: Let $\mathrm{p}=\left(\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{k}}\right)$ be an arbitrary path and $e_{i}=\left(v_{i}, v_{i+1}\right)$ for all i. It holds:

$$
\begin{aligned}
\mathrm{r}(\mathrm{p}) & =\sum_{\mathrm{i}} \mathrm{r}\left(\mathrm{e}_{\mathrm{i}}\right) \\
& =\sum_{\mathrm{i}}\left(\phi\left(\mathrm{v}_{\mathrm{i}}\right)+\mathrm{c}\left(\mathrm{e}_{\mathrm{i}}\right)-\phi\left(\mathrm{v}_{\mathrm{i}+1}\right)\right) \\
& =\phi\left(\mathrm{v}_{1}\right)+\mathrm{c}(\mathrm{p})-\phi\left(\mathrm{v}_{\mathrm{k}}\right)
\end{aligned}
$$

Johnson's Method

Lemma 4.4: Suppose that G has no negative cycles and that all nodes can be reached from s. Let $\phi(v)=\mu(s, v)$ for all $v \in V$. With this $\phi, r(e) \geq 0$ for all e.
Proof:

- According to our assumption, $\mu(\mathrm{s}, \mathrm{v}) \in \mathbb{R}$ for all v
- We know: for every edge $e=(v, w)$, $\mu(\mathrm{s}, \mathrm{v})+\mathrm{c}(\mathrm{e}) \geq \mu(\mathrm{s}, \mathrm{w})$ (otherwise, we have a contradiction to the definition of μ !)
- Therefore, $r(e)=\mu(s, v)+c(e)-\mu(s, w) \geq 0$

Johnson's Method

1. Create new node s and new edges (s, v) for all v in G with $c(s, v)=0$ (all nodes reachable!)
2. Compute $\mu(\mathrm{s}, \mathrm{v})$ using Bellman-Ford and set $\phi(v):=\mu(s, v)$ for all v
3. Compute the reduced costs $r(e)$
4. Compute for all nodes v the distances $\bar{\mu}(\mathrm{v}, \mathrm{w})$ using Dijkstra with the reduced costs on graph G without node s
5. Compute the correct distances $\mu(\mathrm{v}, \mathrm{w})$ via $\mu(\mathrm{v}, \mathrm{w}):=\bar{\mu}(\mathrm{v}, \mathrm{w})+\phi(\mathrm{w})-\phi(\mathrm{v})$

Johnson's Method

Example:

Johnson's Method

Step 1: create new source s

Johnson's Method

Johnson's Method

Step 3: compute r(e)-values

The reduced cost of $\mathrm{e}=(\mathrm{v}, \mathrm{w})$ is:

$$
r(e):=\phi(v)+c(e)-\phi(w)
$$

Johnson's Method

Step 4: compute all distances $\bar{\mu}(\mathrm{v}, \mathrm{w})$ via Dijkstra

$\bar{\mu}$	a	b	c	d
a	0	2	3	3
b	1	0	1	1
c	0	2	0	3
d	0	2	0	0

Johnson's Method

Step 5: compute correct distances via the formula $\mu(\mathrm{v}, \mathrm{w})=\bar{\mu}(\mathrm{v}, \mathrm{w})+\phi(\mathrm{w})-\phi(\mathrm{v})$

μ	a	b	c	d
a	0	2	2	3
b	1	0	0	1
c	1	3	0	4
d	0	2	-1	0

All Pairs Shortest Paths

Runtime of Johnson's Method:

$$
\begin{aligned}
& \mathrm{O}\left(\mathrm{~T}_{\text {Bellman-Ford }}(\mathrm{n}, \mathrm{~m})+n \cdot T_{\text {piikstra }}(n, m)\right) \\
& =\mathrm{O}\left(\mathrm{n} \cdot \mathrm{~m}+\mathrm{n}(\mathrm{n} \log n+m){ }^{2}+\mathrm{m}\right) \\
& =\mathrm{O}\left(n \cdot m+\mathrm{n}^{2} \log n\right)
\end{aligned}
$$

when using Fibonacci heaps.

- Problem with the runtime bound: m can be quite large in the worst case (up to $\sim n^{2}$)
- Can we significantly reduce m if we are fine with computing approximate shortest paths?

Graph Spanners

Definition 4.5: Given an undirected graph
$G=(V, E)$ with edge costs $c: E \rightarrow \mathbb{R}$, a subgraph $H \subseteq G$ is an (α, β)-spanner of G iff for all $u, v \in V$,

$$
d_{H}(u, v) \leq \alpha \cdot d_{G}(u, v)+\beta
$$

- $d_{G}(u, v)$: distance of u and v in G
- α : multiplicative stretch
- β : additive stretch

Graph Spanners

Example: all edge costs are 1

Graph Spanners

Consider the following Greedy algorithm by Althöfer et al. (Discrete Computational Geometry,1993):

```
E(H):=\varnothing
for each {u,v}\inE(G) in the order of non-decreasing edge costs do
    if (2k-1)\cdotc(u,v)<d
        add {u,v} to E(H)
```

Theorem 4.6: For any $\mathrm{k} \geq 1,|E(H)|=O\left(n^{1+1 / k}\right)$ and the graph H constructed by the Greedy algorithm is a ($2 \mathrm{k}-1,0$)-spanner.

Thorup and Zwick have shown that for any graph G with non-negative edge costs a structure related to H can be built in expected time $\mathrm{O}\left(\mathrm{k} \cdot \mathrm{m} \cdot \mathrm{n}^{1 / k}\right)$, which implies that we can then solve the ($2 \mathrm{k}-1$)-approximate APSP in time

$$
\mathrm{O}\left(\mathrm{k} \cdot \mathrm{~m} \cdot \mathrm{n}^{1 / k}+\mathrm{n}^{2+1 / k}\right)
$$

We will get back to that when we talk about distance oracles.

Graph Spanners

Proof of Theorem 4.6:
Lemma 4.7: H is a ($2 \mathrm{k}-1,0$)-spanner of G .
Proof:

- Consider any edge $\{u, v\} \in E(G) \backslash E(H)$.
- Since $\{u, v\}$ was rejected by the algorithm, $\mathrm{d}_{\mathrm{H}}(\mathrm{u}, \mathrm{v}) \leq(2 \mathrm{k}-1) \cdot \mathrm{c}(\mathrm{u}, \mathrm{v})$.
- Consider now any shortest path p from node a to b in G.
- For every edge $\{u, v\}$ in p, there is a path of length at most $(2 \mathrm{k}-1) \cdot \mathrm{c}(\mathrm{u}, \mathrm{v})$ in H .
- Replacing each edge \{u,v\} in p by this path results in a path from a to b in H of length at most $(2 k-1) \cdot c(p)$.

Graph Spanners

Proof of Theorem 4.6:
Lemma 4.8: Let C be any cycle in H . Then $|\mathrm{C}|>2 \mathrm{k}$.
Proof:

- Assume that there is a cycle C of length at most 2 k in H .
- Let $\{u, v\}$ be the last edge in C that was added by the algorithm.
- Clearly, $\{u, v\}$ has the largest cost of all edges in C.
- Also, when $\{u, v\}$ was considered, $(2 k-1) \cdot c(u, v)<d_{H}(u, v)$ as otherwise $\{u, v\}$ would not have been added to H.
- However, since $C \backslash\{u, v\}$ results in a path of length at most $(2 k-1) \cdot c(u, v)$ from u to $v, d_{H}(u, v) \leq(2 k-1) \cdot c(u, v)$, leading to a contradiction.
- Hence, the lemma is true.

Granns?

Proof of Theorem 4.6:
Lemma 4.8 implies that H has a girth (defined as the minimum cycle length in H) of more than $2 k$.

Lemma 4.9: Let H be a graph of size n with girth $>2 k$. Then $|E(H)|=O\left(n^{1+1 / k}\right)$. Proof:

- Let H be be any graph with girth $>2 k$ and at least $n+2 n^{1+1 / k}$ edges.
- Repeatedly remove any node from H of degree at most $\left\lceil n^{1 / k}\right\rceil$ and any edges incident to that node, until no such node exists.
- The total number of edges removed in this way is at most $n \cdot\left(n^{1 / k+1}\right)$.
- Hence, we obtain a subgraph H^{\prime} of H of minimum degree more than $\left\lceil\mathrm{n}^{1 / \mathrm{k}}\right\rceil$ with at least $\mathrm{n}^{1+1 / k}$ edges connecting at most n nodes.
- Exercise: show that there cannot be a graph G of size n with girth $>2 k$ and minimum degree more than $\left\lceil n^{1 / k}\right\rceil$.
- Thus, H^{\prime} must have a girth of at most 2 k , and therefore also the original graph H. This, however, is a contradiction.

Graph Spanners

If we restrict ourselves to unweighted graphs (i.e., all edges have a cost of 1), we can also construct good additive spanners.

Theorem 4.10: Any n-node graph G has a (1,2)-spanner with $O\left(n^{3 / 2} \log \right.$
n) edges.

Proof:
We first need the notion of hitting sets.
Definition 4.11: Given a collection M of subsets of V , a subset $\mathrm{S} \subseteq \mathrm{V}$ is a hitting set of M if it intersects every set in M.

Lemma 4.12: Let $M=\left(S_{1}, \ldots, S_{n}\right)$ be a collection of subsets of $\mathrm{V}=\{1, \ldots, \mathrm{n}\}$ with $\left|S_{i}\right| \geq R$ for all i. There is an algorithm running in $O(n R \log n+$ $(n / R) \log ^{2} n$) time that finds a hitting set S of M with $|S| \leq(n / R) \mid n n$.

Graph Spanners

Lemma 4.12: Let $M=\left(S_{1}, \ldots, S_{n}\right)$ be a collection of subsets of $V=\{1, \ldots, n\}$ with $\left|S_{j}\right| \geq R$ for all i. There is an algorithm running in $O\left(n R \log n+(n / R) \log ^{2} n\right)$ time that finds a hitting set S of M with $|S| \leq(n / R)$ ln n.
Proof:

- Assume w.l.o.g. that $\left|S_{i}\right|=R$ for all i. Run the following greedy algorithm:

$$
|S|:=\varnothing
$$

for each $1 \leq j \leq n$, keep a counter $c(j)=\left|\left\{S_{i} \in M: j \in S_{i}\right\}\right|$ while $\mathrm{M} \neq \varnothing$ do
k:=argmax ${ }_{j} c(j)$
$S:=S \cup\{k\}$
remove any subsets from M containing k and update the counters $\mathrm{c}(\mathrm{j})$ accordingly

- To obtain the runtime, we store the counts $c(j)$ in a data structure that can support the following operations in $\mathrm{O}(\log \mathrm{n})$ time: insert an element, return element j with maximum $\mathrm{c}(\mathrm{j})$, decrement a given $\mathrm{c}(\mathrm{j})$.

Graph Spanners

$|S|:=\varnothing$
for each $1 \leq j \leq n$, keep a counter $c(j)=\left|\left\{S_{i} \in M: j \in S_{i}\right\}\right|$
while $M \neq \varnothing$ do
$\mathrm{k}:=\operatorname{argmax}_{\mathrm{j}} \mathrm{c}(\mathrm{j})$
$\mathrm{S}:=\mathrm{S} \cup\{\mathrm{k}\}$
remove any subsets from M containing k and update the counters $\mathrm{c}(\mathrm{j})$ accordingly

- total number of inserts: n because of n counters
\rightarrow runtime $\mathrm{O}(\mathrm{n} \log \mathrm{n})$
- total number of decrements: nR because each of the n sets contains just R elements and each of them can only cause one decrement \rightarrow runtime $\mathrm{O}(\mathrm{nR} \log \mathrm{n})$
- total number of argmax calls: depends on number of iterations of while loop

Graph Spanners

Proof of Lemma 4.12 (continued):

- We still need an upper bound on |S| (which gives an upper bound on while loop)
- Let m_{j} be the number of sets remaining in M after j passes of the while loop. Then $\mathrm{m}_{0}=\mathrm{n}$.
- Let k_{j} be the j -th element added to S , so $\mathrm{m}_{\mathrm{j}}=\mathrm{m}_{\mathrm{j}-1}-\mathrm{C}\left(\mathrm{k}_{\mathrm{j}}\right)$.
- Just before we add k_{j}, the sum of $\mathrm{c}(\mathrm{j})$ over all $\mathrm{j} \in \mathrm{V} \backslash\left\{\mathrm{k}_{1}, \ldots, \mathrm{k}_{\mathrm{j}-1}\right\}$ must be $m_{j-1} R$, so $c\left(k_{j}\right)$ must be at least the average count, which is $m_{j-1} R /(n-$ j+1).
- Therefore,

$$
\begin{aligned}
m_{j} & \leq(1-R /(n-j+1)) \cdot m_{j-1} \leq n \quad \Pi_{l=0} 0^{j-1}(1-R /(n-l)) \\
& \left.<n \cdot(1-R / n) j \leq n \cdot e^{-R j / n} \quad \text { (using the fact that 1-x } \leq e^{-x} \text { for all } x \in[0,1]\right)
\end{aligned}
$$

- Taking $j=(n / R)$ In n gives $m_{j}<1$, and therefore $m_{j}=0$.
- Hence, $|S| \leq(n / R)$ In n.
- Thus, the total runtime over all argmax calls is $O\left((n / R) \log ^{2} n\right)$.

Graph Spanners

Proof of Theorem 4.10 (continued):

- Let S be a hitting set of minimal size for $M=\{N(v) \mid \operatorname{deg}(v) \geq \sqrt{n}\}$.
- From Lemma $4.12(R=\sqrt{n})$ we know that $|S|=O(\sqrt{n} \log n)$.
- Do a BFS search from each $s \in S$ and add the resulting n edges of the BFS tree to $E(H)$.
- For every $u \in V$ with $\operatorname{deg}(u)<\sqrt{n}$ (the low-degree nodes), add all edges incident to u to $E(H)$.
- By construction, $|E(H)|=|S| \cdot n+n \sqrt{n}=O\left(n^{3 / 2} \log n\right)$.
- Consider any pair $u, v \in V$ with shortest path p in G. We have two cases:
- (a): p contains only low-degree nodes. Then p is also contained in H , so $d_{H}(u, v)=d(u, v)$.
- (b): p contains a high-degree node x. Let $s \in S$ be a node adjacent to x. Then we append the shortest paths from u to s and s to v in H to obtain a path from u to v in H. It holds:

$$
\begin{aligned}
d_{H}(u, v) & \leq d_{H}(u, s)+d_{H}(s, v)=d(u, s)+d(v, s) \\
& \leq(d(u, x)+1)+(d(v, x)+1)=d(u, v)+2
\end{aligned}
$$

- Hence, H is indeed $\mathrm{a}(1,2)$-spanner.

Graph Spanners

Runtime of the algorithm for (1,2)-spanner:

- $O\left(n^{3 / 2} \log n\right)$: construction of hitting set S
- $O(\sqrt{n} \log n(n+m))$: BFS for all nodes in S
- $\mathrm{O}\left(\mathrm{n}^{3 / 2}\right)$: adding all edges of low-degree nodes to H

Total runtime: $O(\sqrt{n}(m+n) \log n)$).
Runtime of approximate APSP algorithm for an unweighted graph G based on (1,2)-spanner H:

$$
\begin{aligned}
& O(\sqrt{n}(m+n) \log n))+O\left(n \cdot n^{3 / 2} \log n+n^{2} \log n\right) \\
= & O\left(n^{5 / 2} \log n\right)
\end{aligned}
$$

With a more complex approach the runtime can be reduced to
$O\left(n^{7 / 3} \log n\right)$. For the details see:
D. Dor, S. Halperin, and U. Zwick. All-pairs almost shortest paths. SIAM Journal of Computing, 29(5): 1740-1759, 2000.

Graph Spanners

Interestingly, the following two results are known:
Theorem 4.13: Any n-node graph G has a (1,6)-spanner with $O\left(n^{4 / 3}\right)$ edges.

Theorem 4.14: In general, there is no additive spanner with $O\left(n^{4 / 3-\varepsilon}\right)$ edges for n-node graphs for any $\varepsilon>0$.

For more information on that see:
Amir Abboud and Greg Bodwin. The $4 / 3$ additive spanner exponent is tight. Proc. of the 48th ACM Symposium on Theory of Computing (STOC), 2016.

Distance Oracles

How to quickly answer distance requests?

Naive approach:

- Run an APSP algorithm and store all answers in a matrix Problems:
- High runtime $\left(O\left(n m+n^{2} \log n\right)\right)$
- High storage space $\left(\Theta\left(n^{2}\right)\right)$

Alternative approach, if approximate answers are sufficient:

- Compute additive or multiplicative spanner, and run an APSP algorithm on that spaner.
\rightarrow lower runtime
- But storage space is still high

Better solutions concerning the storage space have been investigated under the concept of distance oracles.

Distance Oracles

Definition 4.15: An α-approximate distance oracle is defined by two algorithms:

- a preprocessing algorithm that takes as its input a graph $G=(V, E)$ and returns a summary of G, and
- a query algorithm based on the summary of G that takes as its input two vertices $u, v \in V$ and returns an estimate $D(u, v)$ such that $d(u, v) \leq D(u, v) \leq$ $\alpha \cdot d(u, v)$.

The quality of an α-approximate distance oracle is defined by its query time $q(n)$, preprocessing time $p(m, n)$, and storage space $s(n)$. The goal is to minimize all of these quantities.

Thorup and Zwick (STOC 2001) have shown the following result for graphs of non-negative edge costs:

Theorem 4.16: For all $k \geq 1$ there exists a (2 k -1)-approximate distance oracle using $\mathrm{O}\left(\mathrm{k} \cdot \mathrm{n}^{1+1 / k}\right)$ space and $\mathrm{O}\left(\mathrm{m} \cdot \mathrm{n}^{1 / k}\right)$ time for preprocessing that can answer queries in $\mathrm{O}(\mathrm{k})$ time (where we hide logarithmic factors in the O -notation).

Distance Oracles

Theorem 4.16: For all $k \geq 1$ there exists a (2k-1)-approximate distance oracle using $\mathrm{O}\left(\mathrm{k} \cdot \mathrm{n}^{1+1 / k}\right)$ space and $\mathrm{O}\left(\mathrm{m} \cdot \mathrm{n}^{1 / k}\right)$ time for preprocessing that can answer queries in $\mathrm{O}(\mathrm{k})$ time (where we hide logarithmic factors in the O-notation).
Proof:
$\mathrm{k}=1$: trivial. Just run our APSP algorithm.
$\mathrm{k}=2$: Consider the following preprocessing algorithm:

```
A:= random subset S\subseteqV of size O(\sqrt{}{n}\operatorname{log n)}
for each }a\inA\mathrm{ run Dijkstra to compute d(a,v) for all v}v\in
for each v\inV\A do
    p
    run Dijkstra to compute A(v):={x\inV | d(v,x)<d(v, p
    B(v):=A\cupA(v)
    store }\mp@subsup{\textrm{p}}{\textrm{A}}{(v)
    for all }\textrm{X}\in\textrm{B}(\textrm{v})\mathrm{ , store d(v,x) under key (v,x) in a hash table
```

- It is easy to show that with high probability A is a hitting set of $M=\left\{N_{\sqrt{n}}(v) \mid v \in V\right\}$, where $N_{\sqrt{n}}(v)$ is the set containing the closest \sqrt{n} nodes to V .

Distance Oracles

Lemma 4.17: $|\mathrm{B}(\mathrm{v})| \leq \mathrm{O}(\sqrt{n} \log \mathrm{n})$.
Proof:

- It suffices to show that $|A(v)| \leq \sqrt{n}$ since by construction $|A|=O(\sqrt{n} \log n)$.
- Because A hits the closest \sqrt{n} nodes to v with high probability, some node $a \in A$ is also in $N_{\sqrt{n}}(v)$.
- Thus, all nodes closer to v than a are also in $\mathrm{N}_{\sqrt{n}}(\mathrm{v})$.
- By the definition of $A(v)$, this implies that $A(v) \subseteq N_{\sqrt{n}}(v)$, and therefore, $|A(v)| \leq \sqrt{n}$.

Distance Oracles

Proof of Theorem 4.16 (continued):
Now we can bound the quality of the distance oracle.

- Lemma 4.17 implies that the storage space needed by our distance oracle is $O(n \cdot \sqrt{n} \log n)$.
- A query (u, v) is processed as follows:
if $d(u, v)$ is stored in the hash table then return $\mathrm{d}(\mathrm{u}, \mathrm{v})$
else
return $d\left(u, p_{A}(u)\right)+d\left(v, p_{A}(u)\right)$
- This obviously takes constant time. We also need to show that $\mathrm{d}(\mathrm{u}, \mathrm{v}) \leq \mathrm{D}(\mathrm{u}, \mathrm{v}) \leq 3 \mathrm{~d}(\mathrm{u}, \mathrm{v})$.

Distance Oracles

Claim: $d(u, v) \leq D(u, v) \leq 3 d(u, v)$.

- Suppose that $v \notin B(u)$, as otherwise $D(u, v)=d(u, v)$.
- By the triangle inequality we have $d(u, v) \leq d\left(u, p_{A}(u)\right)+d\left(v, p_{A}(u)\right)=D(u, v)$
- In order to show that $D(u, v) \leq 3 d(u, v)$, we use the triangle inequality again to obtain

$$
\begin{aligned}
D(u, v) & =d\left(u, p_{A}(u)\right)+d\left(p_{A}(u), v\right) \\
& \leq d\left(u, p_{A}(u)\right)+\left(d\left(p_{A}(u), u\right)+d(u, v)\right) \\
& =2 d\left(u, p_{A}(u)\right)+d(u, v) \\
& \leq 3 d(u, v)
\end{aligned}
$$

Distance Oracles

Proof of Theorem 4.16 (continued):
It remains to determine the runtime for the preprocessing.

- For each $a \in A$ run Dijkstra to compute $d(a, v)$ for all $v \in V$: runtime $O((m+n \log n) \cdot \sqrt{n} \log n)$.
- Determine $p_{A}(v)$ for each $v \in V \backslash A$: total runtime $O(n \cdot \sqrt{n} \log n)$
- Run Dijkstra to compute $\mathrm{A}(\mathrm{v}):=\left\{\mathrm{x} \in \mathrm{V} \mid \mathrm{d}(\mathrm{v}, \mathrm{x})<\mathrm{d}\left(\mathrm{v}, \mathrm{p}_{\mathrm{A}}(\mathrm{v})\right)\right\}$:

We need to modify Dijkstra so that we start with a Fibonacci heap only containing v and we only include a node y into the heap (and therefore process it) if $d(x)+c(x, y)<d\left(v, p_{A}(v)\right)$ for some processed x. Then the runtime for each $v \in V \backslash A$ is $O(|E(A(v))|+|A(v)| \log n)$, where $E(A(v))$ is the set of all edges containing vertices of $A(v)$.

- Let $C(v)=\{w \in V \mid V \in A(w)\}$. One can show (similarly to $A(v)$) that the expected size of $C(v)$ ist at most $2 \sqrt{n}$. Hence,

$$
\begin{aligned}
\Sigma_{w \in V}|E(A(w))| & \leq \Sigma_{w \in V, v \in A(w)}|E(v)|=\Sigma_{v \in V, w \in C(v)}|E(v)| \\
& =\Sigma_{v \in V}(|C(v)| \cdot|E(v)|)=O(m \cdot \sqrt{n})
\end{aligned}
$$

- Thus, the overall runtime for the $A(v)^{\prime} s$ is $O(m \cdot \sqrt{n}+n \sqrt{n} \log n)$.
- Therefore, the preprocessing needs $\mathrm{O}((\mathrm{m}+\mathrm{n} \log \mathrm{n}) \cdot \sqrt{\mathrm{n}} \log \mathrm{n})$ time.

Distance Oracles

Proof of Theorem 4.16 (continued):
The algorithm for general k proceeds by taking many related samples A_{0}, \ldots, A_{k} instead of just a single sample A. Concretely, it does the following:

- Let $A_{0}=V$ and $A_{k}=\varnothing$. For each $1 \leq i \leq k-1$, choose a random $A_{i} \subseteq A_{i-1}$ of size $\left(\left|A_{i-1}\right| / n^{1 / k}\right) \log n=$ $\mathrm{O}\left(\mathrm{n}^{1-1 \mathrm{k}} \log \mathrm{n}\right)$.
- Let $p_{i}(v)$ be the closest node to v in A_{i}. If $d\left(v, p_{i}(v)\right)=d\left(v, p_{i+1}(v)\right)$ then let $p_{i}(v)=p_{i+1}(v)$.
- For all $v \in V$ and $i<k-1$, define

$$
\begin{aligned}
& A_{i}(v)=\left\{x \in A_{i} \mid d(v, x)<d\left(v, p_{i+1}(v)\right)\right\} \\
& B(v)=A_{k-1} \cup\left(U_{i=0}^{k-2} A_{i}(v)\right)
\end{aligned}
$$

- For all $v \in V$ and all $x \in B(v)$, store $d(v, x)$ in a hash table. Also store for each $v \in V$ and each $i \leq k-1, p_{i}(v)$.

A query for (u, v) then works as follows:

```
w:=pov
for i=1 to k do
    if w\inB(u) then return d(u,w)+d(w,v)
    else w:= pi(u) ; swap u and v
```

For more information see:
Mikkel Thorup and Uri Zwick. Approximate distance oracles. In Proc. of the 33rd ACM Symposium on Theory of Computing (STOC), 2001.

Next Chapter

Matching algorithms...

