
Fundamental Algorithms

Chapter 4: Shortest Paths

Christian Scheideler
WS 2017

29.11.2017 Chapter 4 2

Shortest Paths

Central question: Determine fastest way to get from s to t.

s

t

29.11.2017 Chapter 4 3

Shortest Paths
Shortest Path Problem:
• directed/undirected graph G=(V,E)
• edge costs c:E→ℝ

• SSSP (single source shortest path):
find shortest paths from a source node to
all other nodes

• APSP (all pairs shortest path):
find shortest paths between all pairs of
nodes

29.11.2017 Chapter 4 4

Shortest Paths

-∞

+∞ 0

-∞ -∞

-∞

2 -3

-1 -3s

0

-1 -2

-2

5

2-1

0

0

-2

42

µ(s,v): distance between s and v

µ(s,v) = -∞ path of arbitrarily low cost from s to v
∞ no path from s to v

min{ c(p) | p is a path from s to v}

29.11.2017 Chapter 4 5

Shortest Paths

2 -3

-1 -3
-1 -2

-2

5

2

When is the distance -∞?
If there is a negative cycle:

s vC c(C)<0

-∞

+∞ 0

-∞ -∞

-∞ s

0-1

0

0

-2

42

29.11.2017 Chapter 4 6

Shortest Paths

Negative cycle necessary and sufficient for a
distance of -∞.

Negative cycle sufficient:

s vC c(C)<0
path p path q

Cost for i-fold traversal of C:
c(p) + i⋅c(C) + c(q)
For i→∞ this expression approaches -∞.

29.11.2017 Chapter 4 7

Shortest Paths

Negative cycle necessary and sufficient for a
distance of -∞.

Negative cycle necessary:
• l: minimal cost of a simple path from s to v
• suppose there is a non-simple path p from s to v with
cost c(r)<l

• p non-simple: continuously remove a cycle C till we
are left with a simple path

• since c(p) < l, there must be a cycle C with c(C)<0

29.11.2017 Chapter 4 8

Shortest Paths in Arbitrary Graphs

General Strategy:
• Initially, set d(s):=0 and d(v):=∞ for all other

nodes
• Visit nodes in an order that ensures that at least

one shortest path from s to every v is visited in
the order of its nodes

• For every visited v, update distances to nodes w
with (v,w)∈E, i.e., d(w):= min{d(w), d(v)+c(v,w)}

29.11.2017 Chapter 4 9

Bellman-Ford Algorithm
Consider graphs with arbitrary edge costs.

Problem: visit nodes along a shortest path from s
to v in the right order

Dijkstra´s algorithm cannot be used in this case
any more.

0 d1 d2 d3 d4s v
w

29.11.2017 Chapter 4 10

Bellman-Ford Algorithm

Example:

Node v has wrong distance value!

s

∞

∞

∞

3 -4

-12

1
1

2

3

0

-1

v

29.11.2017 Chapter 4 11

Bellman-Ford Algorithm
Lemma 4.1: For every node v with µ(s,v)>-∞

there is a simple path (without cycle!) from
s to v of length µ(s,v).

Proof:
• Path with cycle of length ≥0: removing the

cycle does not increase the path length
• Path with cycle of length <0: distance from

s is -∞ !

29.11.2017 Chapter 4 12

Bellman-Ford Algorithm

Conclusion: (graph with n nodes)
For every node v with µ(s,v)> -∞ there is a
shortest path along <n nodes to v.

Strategy: visit (n-1)-times all nodes in the
graph and update distances. Then all
shortest paths have been considered.

0 d1 d2 d3 d4s v
Run 1 2 3 4

29.11.2017 Chapter 4 13

Bellman-Ford Algorithm
Problem: detection of negative cycles

Conclusion: in a negative cycle, distance of at
least one node keeps decreasing in each round,
starting with a round <n

s ∞

∞

∞

∞

1

1 -1

0-2

1

2

1

1

-1

0

-1

29.11.2017 Chapter 4 14

Bellman-Ford Algorithm
Lemma 4.2:
• No decrease of a distance in a round

(i.e., d[v]+c(v,w)≥d[w] for all w):
Done because d[w]=µ(s,w) for all w

• Decrease of a distance even in n-th round
(i.e., d[v]+c(v,w)<d[w] for some w):
There are negative cycles for all of these nodes,
so node w has distance µ(s,w)=-∞. If this is true
for w, then also for all nodes reachable from w.

Proof: exercise

29.11.2017 Chapter 4 15

Bellman-Ford Algorithm
Procedure BellmanFord(s: NodeId)

d=<∞,…,∞>: NodeArray of ℝ∪{-∞, ∞}
parent=<⊥,…, ⊥>: NodeArray of NodeId
d[s]:=0; parent[s]:=s
for i:=1 to n-1 do // update distances for n-1 rounds

forall e=(v,w)∈E do
if d[w] > d[v]+c(e) then // better distance?

d[w]:=d[v]+c(e); parent[w]:=v
forall e=(v,w) ∈E do // still better in n-th round?

if d[w] > d[v]+c(e) then infect(w)

Procedure infect(v) // set -∞-distance starting with v
if d[v]>-∞ then

d[v]:=-∞
forall (v,w)∈E do infect(w)

29.11.2017 Chapter 4 16

Bellman-Ford Algorithm
Runtime: O(n⋅m)

Improvements:
• Check in each update round if we still

have d[v]+c[v,w]<d[w] for some (v,w)∈E.
No: done!

• Visit in each round only those nodes w
with some edge (v,w)∈E where d[v] has
decreased in the previous round.

29.11.2017 Chapter 4 17

All Pairs Shortest Paths

Assumption: graph with arbitrary edge costs,
but no negative cycles

Naive Strategy for a graph with n nodes: run
n times Bellman-Ford Algorithm (once for
every node as the source)

Runtime: O(n2 m)

29.11.2017 Chapter 4 18

All Pairs Shortest Paths
Better Strategy: Reduce n Bellman-Ford

applications to n Dijkstra applications

Problem: we need non-negative edge costs

Solution: convert edge costs into non-
negative edge costs without changing the
shortest paths (not so easy!)

29.11.2017 Chapter 4 19

All Pairs Shortest Paths

Counterexample to additive increase by c:

before cost +1 everywhere

s

v

1 -1

12

s

v

2 0

23

: shortest path

29.11.2017 Chapter 4 20

Johnson´s Method
• Let φ:V→ℝ be a function that assigns a potential

to every node.
• The reduced cost of e=(v,w) is:

r(e) := c(e) + φ(v) - φ(w)

Lemma 4.3: Let p and q be paths connecting the
same endpoints in G. Then for every potential φ:
r(p)<r(q) if and only if c(p)<c(q).

29.11.2017 Chapter 4 21

Johnson´s Method
Lemma 4.3: Let p and q be paths connecting the

same endpoints in G. Then for every potential φ:
r(p)<r(q) if and only if c(p)<c(q).

Proof: Let p=(v1,…,vk) be an arbitrary path and
ei=(vi,vi+1) for all i. It holds:

r(p) = ∑i r(ei)
= ∑i (φ(vi) + c(ei) - φ(vi+1))
= φ(v1) + c(p) - φ(vk)

29.11.2017 Chapter 4 22

Johnson´s Method
Lemma 4.4: Suppose that G has no negative

cycles and that all nodes can be reached from s.
Let φ(v)=µ(s,v) for all v∈V. With this φ, r(e)≥0 for
all e.

Proof:
• According to our assumption, µ(s,v)∈ℝ for all v
• We know: for every edge e=(v,w),
µ(s,v)+c(e)≥µ(s,w) (otherwise, we have a
contradiction to the definition of µ!)

• Therefore, r(e) = µ(s,v) + c(e) - µ(s,w) ≥ 0

29.11.2017 Chapter 4 23

Johnson´s Method
1. Create new node s and new edges (s,v) for all

v in G with c(s,v)=0 (all nodes reachable!)
2. Compute µ(s,v) using Bellman-Ford and set

φ(v):=µ(s,v) for all v
3. Compute the reduced costs r(e)
4. Compute for all nodes v the distances µ(v,w)

using Dijkstra with the reduced costs on graph
G without node s

5. Compute the correct distances µ(v,w) via
µ(v,w):=µ(v,w)+φ(w)-φ(v)

29.11.2017 Chapter 4 24

Johnson´s Method

a

b

d

c1 -1

12

a

b

c

d

Example:
2

1

1

-1

29.11.2017 Chapter 4 25

Johnson´s Method

s

a

b

c

d

Step 1: create new source s
2

1

1

-1

0

0

0

0

29.11.2017 Chapter 4 26

Johnson´s Method

s

a

b

c

d

Step 2: apply Bellman-Ford to s
2 1

1

-1

0

0

0

0

φ(a)=0

φ(b)=0

φ(c)=-1

φ(d)=0

29.11.2017 Chapter 4 27

Johnson´s Method

a

b

c

d

Step 3: compute r(e)-values

The reduced cost of e=(v,w)
is:

r(e) := φ(v) + c(e) - φ(w)

2 0

1

0

φ(a)=0

φ(b)=0

φ(c)=-1

φ(d)=0

29.11.2017 Chapter 4 28

Johnson´s Method

a

b

c

d

Step 4: compute all distances
µ(v,w) via Dijkstra 2 0

1

0

φ(a)=0

φ(b)=0

φ(c)=-1

φ(d)=0

µ a b c d
a 0 2 3 3
b 1 0 1 1
c 0 2 0 3
d 0 2 0 0

29.11.2017 Chapter 4 29

Johnson´s Method

a

b

c

d

Step 5: compute correct
distances via the formula
µ(v,w)=µ(v,w)+φ(w)-φ(v)

2 1

1

-1

φ(a)=0

φ(b)=0

φ(c)=-1

φ(d)=0

µ a b c d
a 0 2 2 3
b 1 0 0 1
c 1 3 0 4
d 0 2 -1 0

29.11.2017 Chapter 4 30

All Pairs Shortest Paths
Runtime of Johnson´s Method:

O(TBellman-Ford(n,m) + n⋅TDijkstra(n,m))
= O(n⋅m + n(n log n + m))
= O(n⋅m + n2 log n)

when using Fibonacci heaps.

• Problem with the runtime bound: m can be quite
large in the worst case (up to ~n2)

• Can we significantly reduce m if we are fine with
computing approximate shortest paths?

Graph Spanners
Definition 4.5: Given an undirected graph
G=(V,E) with edge costs c:E→ℝ, a subgraph
H⊆G is an (α,β)-spanner of G iff for all u,v∈V,

dH(u,v) ≤ α⋅dG(u,v) + β

• dG(u,v): distance of u and v in G
• α: multiplicative stretch
• β: additive stretch

29.11.2017 Chapter 4 31

Graph Spanners

Example: all edge costs are 1

29.11.2017 Chapter 4 32

G

H

Graph Spanners
Consider the following Greedy algorithm by Althöfer et al. (Discrete
Computational Geometry,1993):

E(H):=∅
for each {u,v}∈E(G) in the order of non-decreasing edge costs do

if (2k-1)⋅c(u,v)<dH(u,v) then
add {u,v} to E(H)

Theorem 4.6: For any k≥1, |E(H)|=O(n1+1/k) and the graph H constructed by the
Greedy algorithm is a (2k-1,0)-spanner.

Thorup and Zwick have shown that for any graph G with non-negative edge
costs a structure related to H can be built in expected time O(k⋅m⋅n1/k), which
implies that we can then solve the (2k-1)-approximate APSP in time

O(k⋅m⋅n1/k + n2+1/k).

We will get back to that when we talk about distance oracles.

29.11.2017 Chapter 4 33

Graph Spanners
Proof of Theorem 4.6:
Lemma 4.7: H is a (2k-1,0)-spanner of G.
Proof:
• Consider any edge {u,v}∈E(G)\E(H).
• Since {u,v} was rejected by the algorithm,

dH(u,v)≤(2k-1)⋅c(u,v).
• Consider now any shortest path p from node a to b in

G.
• For every edge {u,v} in p, there is a path of length at

most (2k-1)⋅c(u,v) in H.
• Replacing each edge {u,v} in p by this path results in a

path from a to b in H of length at most (2k-1)⋅c(p).

29.11.2017 Chapter 4 34

Graph Spanners
Proof of Theorem 4.6:
Lemma 4.8: Let C be any cycle in H. Then |C|>2k.
Proof:
• Assume that there is a cycle C of length at most 2k in H.
• Let {u,v} be the last edge in C that was added by the

algorithm.
• Clearly, {u,v} has the largest cost of all edges in C.
• Also, when {u,v} was considered, (2k-1)⋅c(u,v)<dH(u,v) as

otherwise {u,v} would not have been added to H.
• However, since C\{u,v} results in a path of length at most

(2k-1)⋅c(u,v) from u to v, dH(u,v)≤(2k-1)⋅c(u,v), leading to a
contradiction.

• Hence, the lemma is true.

29.11.2017 Chapter 4 35

Graph Spanners
Proof of Theorem 4.6:
Lemma 4.8 implies that H has a girth (defined as the minimum cycle length in
H) of more than 2k.

Lemma 4.9: Let H be a graph of size n with girth >2k. Then |E(H)|=O(n1+1/k).
Proof:
• Let H be be any graph with girth >2k and at least n+2n1+1/k edges.
• Repeatedly remove any node from H of degree at most n1/k and any

edges incident to that node, until no such node exists.
• The total number of edges removed in this way is at most n⋅(n1/k+1).
• Hence, we obtain a subgraph H´ of H of minimum degree more than n1/k

with at least n1+1/k edges connecting at most n nodes.
• Exercise: show that there cannot be a graph G of size n with girth >2k and

minimum degree more than n1/k.
• Thus, H´ must have a girth of at most 2k, and therefore also the original

graph H. This, however, is a contradiction.

29.11.2017 Chapter 4 36

Graph Spanners
If we restrict ourselves to unweighted graphs (i.e., all edges have a cost
of 1), we can also construct good additive spanners.

Theorem 4.10: Any n-node graph G has a (1,2)-spanner with O(n3/2 log
n) edges.
Proof:
We first need the notion of hitting sets.

Definition 4.11: Given a collection M of subsets of V, a subset S⊆V is a
hitting set of M if it intersects every set in M.

Lemma 4.12: Let M=(S1,…,Sn) be a collection of subsets of V={1,…,n}
with |Si|≥R for all i. There is an algorithm running in O(nR log n +
(n/R)log2 n) time that finds a hitting set S of M with |S|≤(n/R)ln n.

29.11.2017 Chapter 4 37

Graph Spanners
Lemma 4.12: Let M=(S1,…,Sn) be a collection of subsets of V={1,…,n} with
|Si|≥R for all i. There is an algorithm running in O(nR log n + (n/R) log2 n) time
that finds a hitting set S of M with |S|≤(n/R)ln n.
Proof:
• Assume w.l.o.g. that |Si|=R for all i. Run the following greedy algorithm:

|S|:=∅
for each 1≤j≤n, keep a counter c(j)=|{Si∈M: j∈Si}|
while M≠∅ do

k:=argmaxj c(j)
S:=S∪{k}
remove any subsets from M containing k and
update the counters c(j) accordingly

• To obtain the runtime, we store the counts c(j) in a data structure that can
support the following operations in O(log n) time: insert an element, return
element j with maximum c(j), decrement a given c(j).

29.11.2017 Chapter 4 38

Graph Spanners
|S|:=∅
for each 1≤j≤n, keep a counter c(j)=|{Si∈M: j∈Si}|
while M≠∅ do

k:=argmaxj c(j)
S:=S∪{k}
remove any subsets from M containing k and
update the counters c(j) accordingly

• total number of inserts: n because of n counters
→ runtime O(n log n)

• total number of decrements: nR because each of the n sets contains
just R elements and each of them can only cause one decrement
→ runtime O(nR log n)

• total number of argmax calls: depends on number of iterations of
while loop

29.11.2017 Chapter 4 39

Graph Spanners
Proof of Lemma 4.12 (continued):
• We still need an upper bound on |S| (which gives an upper bound on

while loop)
• Let mj be the number of sets remaining in M after j passes of the

while loop. Then m0=n.
• Let kj be the j-th element added to S, so mj=mj-1–c(kj).
• Just before we add kj, the sum of c(j) over all j∈V\{k1,…,kj-1} must be

mj-1R, so c(kj) must be at least the average count, which is mj-1R/(n-
j+1).

• Therefore,
mj ≤ (1-R/(n-j+1))⋅mj-1 ≤ n Πl=0

j-1 (1-R/(n-l))
< n⋅(1-R/n)j ≤ n⋅e-Rj/n (using the fact that 1-x≤e-x for all x∈[0,1])

• Taking j=(n/R) ln n gives mj<1, and therefore mj=0.
• Hence, |S|≤(n/R) ln n.
• Thus, the total runtime over all argmax calls is O((n/R)log2 n).

29.11.2017 Chapter 4 40

Graph Spanners
Proof of Theorem 4.10 (continued):
• Let S be a hitting set of minimal size for M={ N(v) | deg(v) ≥ n }.
• From Lemma 4.12 (R= n) we know that |S|=O(n log n).
• Do a BFS search from each s∈S and add the resulting n edges of the BFS

tree to E(H).
• For every u∈V with deg(u)< n (the low-degree nodes), add all edges

incident to u to E(H).
• By construction, |E(H)| = |S|⋅n + n n = O(n3/2 log n).
• Consider any pair u,v∈V with shortest path p in G. We have two cases:
• (a): p contains only low-degree nodes. Then p is also contained in H, so

dH(u,v) = d(u,v).
• (b): p contains a high-degree node x. Let s∈S be a node adjacent to x. Then

we append the shortest paths from u to s and s to v in H to obtain a path
from u to v in H. It holds:

dH(u,v) ≤ dH(u,s)+dH(s,v) = d(u,s)+d(v,s)
≤ (d(u,x)+1)+(d(v,x)+1) = d(u,v)+2

• Hence, H is indeed a (1,2)-spanner.

29.11.2017 Chapter 4 41

Graph Spanners
Runtime of the algorithm for (1,2)-spanner:
• O(n3/2 log n): construction of hitting set S
• O(n log n (n+m)): BFS for all nodes in S
• O(n3/2): adding all edges of low-degree nodes to H
Total runtime: O(n (m+n) log n)).

Runtime of approximate APSP algorithm for an unweighted graph G
based on (1,2)-spanner H:

O(n (m+n) log n)) + O(n⋅n3/2 log n + n2 log n)
= O(n5/2 log n)

With a more complex approach the runtime can be reduced to
O(n7/3 log n). For the details see:
D. Dor, S. Halperin, and U. Zwick. All-pairs almost shortest paths. SIAM
Journal of Computing, 29(5): 1740-1759, 2000.

29.11.2017 Chapter 4 42

Graph Spanners
Interestingly, the following two results are known:

Theorem 4.13: Any n-node graph G has a (1,6)-spanner
with O(n4/3) edges.

Theorem 4.14: In general, there is no additive spanner
with O(n4/3-ε) edges for n-node graphs for any ε>0.

For more information on that see:
Amir Abboud and Greg Bodwin. The 4/3 additive spanner
exponent is tight. Proc. of the 48th ACM Symposium on
Theory of Computing (STOC), 2016.

29.11.2017 Chapter 4 43

Distance Oracles
How to quickly answer distance requests?

Naive approach:
• Run an APSP algorithm and store all answers in a matrix
Problems:
• High runtime (O(nm + n2 log n))
• High storage space (Θ(n2))

Alternative approach, if approximate answers are sufficient:
• Compute additive or multiplicative spanner, and run an APSP algorithm on

that spaner.
→ lower runtime

• But storage space is still high

Better solutions concerning the storage space have been investigated under
the concept of distance oracles.

29.11.2017 Chapter 4 44

Distance Oracles
Definition 4.15: An α-approximate distance oracle is defined by two algorithms:
• a preprocessing algorithm that takes as its input a graph G=(V,E) and

returns a summary of G, and
• a query algorithm based on the summary of G that takes as its input two

vertices u,v∈V and returns an estimate D(u,v) such that d(u,v) ≤ D(u,v) ≤
α⋅d(u,v).

The quality of an α-approximate distance oracle is defined by its query time
q(n), preprocessing time p(m,n), and storage space s(n). The goal is to
minimize all of these quantities.

Thorup and Zwick (STOC 2001) have shown the following result for graphs of
non-negative edge costs:

Theorem 4.16: For all k≥1 there exists a (2k-1)-approximate distance oracle
using O(k⋅n1+1/k) space and O(m⋅n1/k) time for preprocessing that can answer
queries in O(k) time (where we hide logarithmic factors in the O-notation).

29.11.2017 Chapter 4 45

Distance Oracles
Theorem 4.16: For all k≥1 there exists a (2k-1)-approximate distance oracle
using O(k⋅n1+1/k) space and O(m⋅n1/k) time for preprocessing that can answer
queries in O(k) time (where we hide logarithmic factors in the O-notation).
Proof:
k=1: trivial. Just run our APSP algorithm.
k=2: Consider the following preprocessing algorithm:

A:= random subset S⊆V of size O(n log n)
for each a∈A run Dijkstra to compute d(a,v) for all v∈V
for each v∈V\A do

pA(v):=argminy∈A d(v,y)
run Dijkstra to compute A(v):={x∈V | d(v,x)<d(v,pA(v))}
B(v):=A∪A(v)
store pA(v) under v
for all x∈B(v), store d(v,x) under key (v,x) in a hash table

• It is easy to show that with high probability A is a hitting set of
M={ N n (v) | v∈V}, where N n (v) is the set containing the closest n nodes
to v.

29.11.2017 Chapter 4 46

Distance Oracles
Lemma 4.17: |B(v)| ≤ O(n log n).
Proof:
• It suffices to show that |A(v)| ≤ n since by

construction |A|=O(n log n).
• Because A hits the closest n nodes to v with

high probability, some node a∈A is also in N n (v).
• Thus, all nodes closer to v than a are also in

N n (v).
• By the definition of A(v), this implies that

A(v) ⊆ N n (v) , and therefore, |A(v)| ≤ n .

29.11.2017 Chapter 4 47

Distance Oracles
Proof of Theorem 4.16 (continued):
Now we can bound the quality of the distance oracle.
• Lemma 4.17 implies that the storage space needed by our

distance oracle is O(n⋅ n log n).
• A query (u,v) is processed as follows:

if d(u,v) is stored in the hash table then
return d(u,v)

else
return d(u,pA(u))+d(v,pA(u))

• This obviously takes constant time. We also need to show
that d(u,v)≤D(u,v)≤3d(u,v).

29.11.2017 Chapter 4 48

Distance Oracles
Claim: d(u,v)≤D(u,v)≤3d(u,v).
• Suppose that v∉B(u), as otherwise D(u,v)=d(u,v).
• By the triangle inequality we have

d(u,v) ≤ d(u,pA(u))+d(v,pA(u)) = D(u,v)
• In order to show that D(u,v)≤3d(u,v), we use the

triangle inequality again to obtain
D(u,v) = d(u,pA(u))+d(pA(u),v)

≤ d(u,pA(u))+(d(pA(u),u)+d(u,v))
= 2d(u,pA(u)) + d(u,v)
≤ 3d(u,v)

29.11.2017 Chapter 4 49

Distance Oracles
Proof of Theorem 4.16 (continued):
It remains to determine the runtime for the preprocessing.
• For each a∈A run Dijkstra to compute d(a,v) for all v∈V:

runtime O((m+n log n)⋅ n log n).
• Determine pA(v) for each v∈V\A: total runtime O(n⋅ n log n)
• Run Dijkstra to compute A(v):={x∈V | d(v,x)<d(v,pA(v))}:

We need to modify Dijkstra so that we start with a Fibonacci heap only
containing v and we only include a node y into the heap (and therefore
process it) if d(x)+c(x,y)<d(v,pA(v)) for some processed x. Then the runtime
for each v∈V\A is O(|E(A(v))|+|A(v)| log n), where E(A(v)) is the set of all
edges containing vertices of A(v).

• Let C(v)={ w∈V | v∈A(w) }. One can show (similarly to A(v)) that the
expected size of C(v) ist at most 2 n. Hence,
Σw∈V |E(A(w))| ≤ Σw∈V, v∈A(w) |E(v)| = Σv∈V, w∈C(v) |E(v)|

= Σv∈V (|C(v)|⋅|E(v)|) = O(m ⋅ n)
• Thus, the overall runtime for the A(v)´s is O(m ⋅ n + n n log n).
• Therefore, the preprocessing needs O((m + n log n) ⋅ n log n) time.

29.11.2017 Chapter 4 50

Distance Oracles
Proof of Theorem 4.16 (continued):
The algorithm for general k proceeds by taking many related samples A0,…,Ak instead of just a
single sample A. Concretely, it does the following:
• Let A0=V and Ak=∅. For each 1≤i≤k-1, choose a random Ai⊆Ai-1 of size (|Ai-1|/n1/k) log n =

O(n1-i/k log n).
• Let pi(v) be the closest node to v in Ai. If d(v,pi(v))=d(v,pi+1(v)) then let pi(v)=pi+1(v).
• For all v∈V and i<k-1, define

Ai(v) = { x∈Ai | d(v,x) < d(v,pi+1(v)) }
B(v) = Ak-1∪(Ui=0

k-2 Ai(v))
• For all v∈V and all x∈B(v), store d(v,x) in a hash table. Also store for each v∈V and each

i≤k-1, pi(v).

A query for (u,v) then works as follows:
w:=p0=v
for i=1 to k do

if w∈B(u) then return d(u,w)+d(w,v)
else w:=pi(u) ; swap u and v

For more information see:
Mikkel Thorup and Uri Zwick. Approximate distance oracles. In Proc. of the 33rd ACM
Symposium on Theory of Computing (STOC), 2001.

29.11.2017 Chapter 4 51

29.11.2017 Chapter 4 52

Next Chapter

Matching algorithms…

	Fundamental Algorithms��Chapter 4: Shortest Paths
	Shortest Paths
	Shortest Paths
	Shortest Paths
	Shortest Paths
	Shortest Paths
	Shortest Paths
	Shortest Paths in Arbitrary Graphs
	Bellman-Ford Algorithm
	Bellman-Ford Algorithm
	Bellman-Ford Algorithm
	Bellman-Ford Algorithm
	Bellman-Ford Algorithm
	Bellman-Ford Algorithm
	Bellman-Ford Algorithm
	Bellman-Ford Algorithm
	All Pairs Shortest Paths
	All Pairs Shortest Paths
	All Pairs Shortest Paths
	Johnson´s Method
	Johnson´s Method
	Johnson´s Method
	Johnson´s Method
	Johnson´s Method
	Johnson´s Method
	Johnson´s Method
	Johnson´s Method
	Johnson´s Method
	Johnson´s Method
	All Pairs Shortest Paths
	Graph Spanners
	Graph Spanners
	Graph Spanners
	Graph Spanners
	Graph Spanners
	Graph Spanners
	Graph Spanners
	Graph Spanners
	Graph Spanners
	Graph Spanners
	Graph Spanners
	Graph Spanners
	Graph Spanners
	Distance Oracles
	Distance Oracles
	Distance Oracles
	Distance Oracles
	Distance Oracles
	Distance Oracles
	Distance Oracles
	Distance Oracles
	Next Chapter

