
Fundamental Algorithms

Chapter 5: Matchings

Christian Scheideler
WS 2017

Basic Notation

Definition 5.1: Let G=(V,E) be an undirected
graph. A matching M in G is a subset of E in
which no two edges share a common node.

04.12.2017 Chapter 5 2

Matching:
Variant 1
Variant 2

Basic Notation
Definition 5.2:
• A matching M in G=(V,E)

is called perfect if |M|=|V|/2.
• A matching M is called a

maximum matching if there
is no matching M´ in G with
|M´|>|M| (example: red edges)

• A matching M is called maximal if it is
maximal w.r.t. „⊆“, i.e., it cannot be extended
(example: green edges)

04.12.2017 Chapter 5 3

Basic Notation
Definition 5.3: Let G=(V,E) be an undirected graph. If

V can be partitioned into two non-empty subsets
V1 and V2 (i.e., V1∪V2 = V and V1∩V2 = ∅) so that
E⊆V1×V2, then G is called bipartite (in this case,
G may also be defined as G=(V1,V2,E)).

04.12.2017 Chapter 5 4

Foundations
Theorem 5.4: A graph G=(V,E) has a perfect

matching if and only if |V| is even and there is no
S⊆V so that the subgraph induced by V\S
contains more than |S| connected components
(CC) of odd size.

Proof:
„⇒“: (only direction we prove here)
• |V| is odd: certainly, no perfect matching possible
• there is an S⊆V so that the subgraph induced by

V\S contains more than |S| connected components
of odd size

04.12.2017 Chapter 5 5

Foundations
Theorem 5.4: A graph G=(V,E) has a perfect

matching if and only if |V| is even and there is no
S⊆V so that the subgraph induced by V\S
contains more than |S| connected components
(CC) of odd size.

Proof:
„⇒“:

04.12.2017 Chapter 5 6

k odd CCs, k>|S|

At least k unmatched
nodes

Not all can be
matched by S.

1

S
2

3

4

k

Foundations
Definition 5.5: A simple path (cycle) v0,v1,...,vk

is called alternating w.r.t. a matching M if the
edges {vi,vi+1} are alternately in M and not in
M.

04.12.2017 Chapter 5 7

v0

v1

v2

v3v4

v5

v1 v2 v3 v4v5

v1 v2 v3 v4

even length:

odd length:

green edges: in M

Foundations
Definition 5.6: An alternating path w.r.t. a matching

M is called augmenting if it contains unmatched
nodes at both ends and does not form a cycle.

04.12.2017 Chapter 5 8

v0

v1

v2

v3v4

v5

v1 v2 v3 v4

not augmenting (v1 matched):

v0 v1 v5 v4

augmenting:

Foundations
Definition 5.7: Let S and T be two sets. Then S⊖T

denotes the symmetric difference of S and T,
i.e., S⊖T = (S\T)∪(T\S).

04.12.2017 Chapter 5 9

S T

S⊖T: all elements in S and T not in S∩T

Foundations
Definition 5.7: Let S and T be two sets. Then S⊖T

denotes the symmetric difference of S and T,
i.e., S⊖T = (S\T)∪(T\S).

Rules: for all sets A,B,C,
• A⊖A=∅
• A⊖B=B⊖A
• (A⊖B)⊖C = A⊖(B⊖C)

04.12.2017 Chapter 5 10

A B

C

Foundations
Definition 5.7: Let S and T be two sets. Then S⊖T

denotes the symmetric difference of S and T, i.e.,
S⊖T = (S\T)∪(T\S).

Lemma 5.8: Let M be a matching and P be an
augmenting path w.r.t. M. Then also M⊖P is a
matching, and it holds that |M⊖P| = |M|+1.

Proof:
change w.r.t. augmenting path P:

04.12.2017 Chapter 5 11

: M : M⊖Punmatched

Theorem 5.9: (Hall´s Theorem)
Let G=(U,V,E) be a bipartite graph. G
contains a matching of cardinality |U| if
and only if:

∀A⊆U: |N(A)|≥|A|
Proof:
„⇒“: clear due to
matching edges

Foundations

04.12.2017 Chapter 5 12

N(A)

A

Proof:
„⇐“: Let M be a maximum matching in G with |M|<|U|.

A⊆U: nodes reachable via alternating paths starting in A´
B⊆V: nodes reachable via alternating paths starting in A´
Observations:
• A∩A´=∅ because a node in U can only be reached by an

alternating path from A´ if it has an edge in M
• B∩B´=∅ because if B∩B´≠∅ then there is an augmenting path

(see picture), so M is not maximum, leading to a contradiction!

Foundations

04.12.2017 Chapter 5 13

A

B

A´

B´

M

unmatched
nodes in U

unmatched
nodes in V

Foundations
Proof:
„⇐“: Let M be a maximum matching in G with |M|<|U|.

A∩A´=∅ and B∩B´=∅:
• |A|=|B| since A={ u∈U | ∃v∈B with {u,v}∈M }
• N(A´)⊆B and N(A)⊆B because otherwise B would be

extendible
• Hence, |N(A∪A´)|≤|B|=|A|<|A∪A´| since |A´|>0

04.12.2017 Chapter 5 14

A

B

A´

B´

M

unmatched
nodes in U

unmatched
nodes in V

Foundations
Alternative proof for „⇐“:
• Suppose that ∀A⊆U: |N(A)|≥|A|.
• Let M be a matching in G with |M|<|U|, and let u0∈U be an

unmatched node.
• Since |N({u0})|≥1, u0 has a neighbor v1∈V. If v1 is unmatched, we

are done because we have already found an augmenting path.
• Otherwise let u1∈U be the node matched with v1. Since u1∉{u0} and

|N({u0,u1})|≥2, there is a node v2∉{v1} that is adjacent to u0 or u1. If
v2 is unmatched, we are done because we have already found an
augmenting path.

• Otherwise, let u2∈U be the node matched with v2. Since u2∉{u0,u1}
and |N({u0,u1,u2})|≥3, there is a node v3∉{v1, v2} that is adjacent to a
node in {u0,u1,u2}. If v3 is unmatched, then we are done, otherwise
we continue as above.

• Since |M|<|V| and |V|<∞, we finally have to get to an unmatched
node vk, and we can increase the matching.

04.12.2017 Chapter 5 15

Foundations
Theorem 5.10: (Berge´s theorem, bipartite graphs)

A matching in a bipartite graph is a maximum
matching if and only if there is no augmenting path
for that matching.

Proof:
„⇒“: (also holds for arbitrary graphs)
• Suppose that there is an augmenting path P for

some matching M.
• Then it follows from Lemma 5.8 that |M⊖P| =

|M|+1, which implies that M cannot be a maximum
matching.

04.12.2017 Chapter 5 16

Foundations
Theorem 5.10: (Berge´s theorem, bipartite graphs)

A matching in a bipartite graph is a maximum
matching if and only if there is no augmenting path
for that matching.

Proof:
„⇐“:
• Certainly holds for bipartite graphs that satisfy

Hall´s theorem.
• We will show the general validity later.

04.12.2017 Chapter 5 17

Foundations
Theorem 5.10: (Berge´s theorem, bipartite graphs)

A matching in a bipartite graph is a maximum
matching if and only if there is no augmenting path
for that matching.

This theorem also holds for general graphs:

Theorem 5.11: (Berge´s theorem)
A matching in an arbitrary graph is a maximum
matching if and only if there is no augmenting path
for that matching.

04.12.2017 Chapter 5 18

Foundations
Berge´s theorem, if correct, implies the following algorithm for
computing a maximum matching:

M:=∅
while ∃augmenting P w.r.t. M do

M:=M⊖P
output M

Runtime:
• The while-loop is executed at most n times.
• The search for an augmenting path can be done in O(n+m) time in

general graphs, as we will see later.
Therefore, a runtime of O(n⋅(n+m)) is possible.

04.12.2017 Chapter 5 19

Matching in Bipartite Graphs
Berge´s theorem, if correct, implies the following algorithm for
computing a maximum matching:

M:=∅
while ∃augmenting P w.r.t. M do

M:=M⊖P
output M

Remarks:
• In a bipartite graph G=(U,V,E) it suffices to search for augmenting

paths starting from unmatched nodes in U because every
augmenting path must have one unmatched node in U and one in V.

• In bipartite graphs we can use an alternating DFS approach to find
augmenting paths.

04.12.2017 Chapter 5 20

Matching in Bipartite Graphs
Simplification for alternating DFS in bipartite graphs:
artificial source s with edges to all unmatched nodes in U

04.12.2017 Chapter 5 21

sArtificial edges are added to M

U

V

04.12.2017 Chapter 5 22

Matching in Bipartite Graphs
• E(u): edge set of node u

Procedure AlternatingBipartiteDFS(s: Node, M: Matching)
d = <∞,…, ∞>: Array [1..n] of IN
parent = <⊥,…,⊥>: Array [1..n] of Node
d[key(s)]:=0 // s has distance 0 to itself
parent[key(s)]:=s // s is its own parent
q:=<s>: Stack of Node
while q ≠<> do // as long as q is not empty

u:= q.pop() // process nodes according to LIFO rule
if (d[key(u)] is even) then A:=M else A:=E\M
if A∩E(u)=∅ and (d[key(u)] is even) then // u unmatched?

return augmenting path (via parent[])
else

foreach {u,v}∈A∩E(u) do
if parent(key(v))=⊥ then // v not visited so far?

q.push(v) // add v to q
d[key(v)]:=d[key(u)]+1
parent[key(v)]:=u

Matching in Bipartite Graphs
Correctness of AlternatingBipartiteDFS:
• Suppose that there is an augmenting path

p=(s,u1,v1,u2,v2,…,vk) w.r.t. M but
AlternatingBipartiteDFS does not find any.

• Let w be the last node in p that was explored by the
algorithm. Certainly, w≠vk because otherwise the
algorithm would have found an augmenting path.

• Suppose that w=vi for some i<k. Then the algorithm
would have also explored ui via the matching edge,
leading to a contradiction.

• So suppose that w=ui for some i<k. Then the algorithm
would have also explored vi+1 via a non-matching
edge, also leading to a contradiction.

04.12.2017 Chapter 5 23

Foundations
Proof of Theorem 5.11: „⇐“ follows from the following lemma.
Lemma 5.12: Let M and N be matchings in G, and let |N|>|M|.

Then N⊖M contains at least |N|-|M| node-disjoint augmenting
paths w.r.t. M.

Proof:
The degree of a node in (V, N⊖M) is at most 2. The
connected components of (V,N⊖M) are either

• isolated nodes,

• simple cycles (of even length), or

• alternating paths

04.12.2017 Chapter 5 24

Foundations
Proof of Lemma 5.12:
• Let C1,…,Ck be the connected components in (V,N⊖M).
• Then it follows from the rules for ⊖ that

M⊖C1⊖…⊖Ck = N

• Note that the Ci´s are node-disjoint, so they can be applied
independently to M.

• It is easy to check that if Ci is a simple cycle or an alternating
path that is not augmenting, then |M⊖Ci|≤|M|.

• Hence, only those Ci´s that are augmenting paths w.r.t. M can
increase the matching, and this by exactly 1.

• Therefore, there must be at least |N|-|M| Ci´s that are
augmenting (and node-disjoint) paths w.r.t. M.

04.12.2017 Chapter 5 25

N⊖M

Foundations
Consequence: approach for finding a maximum matching in

bipartite graphs also works for arbitrary graphs.

We will study the following refined approach:

M:=∅
while ∃augmenting path P w.r.t. M do

- determine a shortest augmenting path P w.r.t. M
- M:=M⊖P

output M

In the following let
• Pi: augmenting path found in round i
• Mi: matching at the end of round i
04.12.2017 Chapter 5 26

Shortest augmenting Paths
Lemma 5.13: Let M be a matching of cardinality r

and let s be the maximum cardinality of a
matching in G=(V,E), s>r. Then there is an
augmenting path w.r.t. M of length ≤2⌊r/(s-r)⌋+1.

Proof:
• Let N be a maximum matching in G, i.e., |N|=s.
• By Lemma 5.12, N⊖M contains ≥s-r augmenting

paths w.r.t. M, which are node-disjoint and
therefore also edge-disjoint.

• At least one of these paths contains ≤⌊r/(s-r)⌋
edges from M.

04.12.2017 Chapter 5 27

Shortest augmenting Paths
Lemma 5.14: Let s be the maximum cardinality of a

matching in G=(V,E). Then the sequence |P1|, |P2|,…
of shortest augmenting paths computed by the refined
algorithm contains at most 2 s +1 different values.

Proof:
• Let r:= ⌊s- s⌋. By construction, |Mi|=i, and therefore

|Mr|=r. From Lemma 5.13 it follows that

• Thus, for i≤r, |Pi| is one of the odd numbers in
[1, 2 s +1], and therefore one of ⌊ s⌋+1 odd numbers.

• Pr+1,…,Ps contribute at most s-r< s+1 additional
lengths.

04.12.2017 Chapter 5 28

|Pr| ≤ 2 ⌊s- s⌋
s - ⌊s- s⌋

+1 ≤ 2⌊s / s⌋+1 ≤ 2⌊ s⌋+1

Shortest augmenting Paths
Lemma 5.15: Let P be a shortest augmenting path w.r.t.

M and P´ be an augmenting path w.r.t M⊖P. Then it
holds that:

|P´| ≥ |P| + 2|P∩P´|
Proof:
• Let N=M⊖P⊖P´, so |N|=|M|+2.
• By Lemma 5.12, M⊖N contains at least 2 node-disjoint

augmenting paths w.r.t. M, called P1 and P2.
• It holds: |M⊖N| = |P⊖P´| = |(P\P´)∪(P´\P)|

= |P|+|P´|-2|P∩P´|
and |M⊖N| ≥ |P1|+|P2| ≥ 2|P| (by def. of P)

• Therefore, |P|+|P´|-2|P∩P´| ≥ 2|P|
⇒ |P´| ≥ 2|P|-|P|+2|P∩P´|

04.12.2017 Chapter 5 29

Shortest augmenting Paths
Recall our refined matching algorithm:

M:=∅
while ∃augmenting path w.r.t. M do

- determine a shortest augmenting path P w.r.t. M
- M:=M⊖P

output M

• Let P1, P2,... be the sequence of shortest
augmenting paths constructed by the algorithm.

• Lemma 5.15: |Pi+1| ≥ |Pi| for all i.

04.12.2017 Chapter 5 30

Shortest augmenting Paths
Lemma 5.16: For every sequence P1, P2,... of shortest augmenting

paths it holds for all Pi and Pj with |Pi|=|Pj| that Pi and Pj are node-
disjoint.

Proof:
• Suppose that there is a sequence (Pk)k≥1 with |Pi|=|Pj| for some j>i

so that Pi and Pj are not node-disjoint, where j-i is minimal.
• Then the paths Pi,...,Pj-1 resp. Pi+1,...,Pj are node-disjoint.
• Therefore, Pj is an augmenting path w.r.t. the matching M after the

augmentations by P1,...,Pi.
• From Lemma 5.15 it follows that |Pj|≥|Pi|+2|Pi∩Pj|, and since

|Pi|=|Pj|, Pi and Pj must be edge-disjoint.
• The matching edges created by Pi are still in M⊖Pi+1⊖Pi+2⊖...⊖Pj-1

because Pi,...,Pj-1 are node-disjoint.
• Since Pj has a node in common with Pi, Pj has to have an edge

(namely, a matching edge) in common with Pi as well.
• However, this cannot be, so Pi and Pj must be node-disjoint.

04.12.2017 Chapter 5 31

Shortest augmenting Paths
Hopcroft-Karp Algorithm:

M:=∅
while ∃augmenting path w.r.t. M do

- l:=length of shortest augmenting path w.r.t. M
- determine w.r.t. „⊆“ a maximal set of node-disjoint

augmenting paths Q1,...,Qk w.r.t. M that have length l
- M:=M⊖Q1⊖ ... ⊖Qk

Corollary 5.17: The while-loop above is executed at most
O(n) times.

Proof: follows from Lemmas 5.14-5.16

04.12.2017 Chapter 5 32

Shortest augmenting Paths
Question: How can we quickly find a set of shortest

augmenting paths w.r.t. matching M?
Graph G bipartite, i.e., G=(U,V,E):
• Determining the shortest length l: alternating BFS,

starting with all unmatched nodes in U, until an
unmatched node is found in V

04.12.2017 Chapter 5 33

: unmatched node

here: l=3

U V U V VU

04.12.2017 Chapter 5 34

Shortest augmenting Paths
• s: artificial node (see Slide 21), E(u): edge set of node u

Procedure AlternatingBipartiteBFS(s: Node, M: Matching)
d = <∞,…, ∞>: Array [1..n] of IN
parent = <⊥,…,⊥>: Array [1..n] of Node
d[key(s)]:=0 // s has distance 0 to itself
parent[key(s)]:=s // s is its own parent
q:=<s>: Queue of Node
while q ≠<> do // as long as node is not empty

u:= q.dequeue() // process nodes according to FIFO rule
if (d[key(u)] is even) then A:=M else A:=M\E
if A∩E(u)=∅ and (d[key(u)] is even) then

augmenting path (via parent[]), stop
else

foreach {u,v}∈A∩E(u) do
if parent(key(v))=⊥ then // v not visited so far?

q.enqueue(v) // add v to the queue q
d[key(v)]:=d[key(u)]+1
parent[key(v)]:=u

Shortest augmenting Paths
Graph G bipartite, i.e., G=(U,V,E):
• Determining the shortest length l: alternating BFS, started with all

unmatched nodes in U, until an unmatched node is found in V or all
nodes have been found.

• Remember the BFS-depth of each node.
• Determining a maximal set of shortest augmenting paths:

Initially, the nodes are unmarked. Perform one after the other from
each unmatched node in U an alternating DFS along unmarked
nodes of increasing BFS-depth up to depth l until we have found an
augmenting path Qi or all edges have been explored.

• For every found path Qi, all nodes in Qi are marked and we
continue to execute DFS from another unmatched node in U.

• Every node at which DFS backtracks (i.e., no augmenting path was
found) will be marked.

Since every node and edge is only processed once in the BFS and
DFS, the runtime is O(n+m).
04.12.2017 Chapter 5 35

Shortest augmenting Paths
Correctness of the algorithm for determining a maximal set of shortest
augmenting paths (here called refined AlternatingBipartiteDFS):
• Suppose that there is an augmenting path p=(u1,v1,u2,v2,…,v2k+1)

w.r.t. M of length l=2k+1 that is not discovered by the refined
AlternatingBipartiteDFS algorithm.

• This can only happen if the nodes of p do not have a consecutive
BFS-depth.

• Suppose w.l.o.g. that BFS-depth(vi) ≠ BFS-depth(ui)+1 for some i.
• Case 1: BFS-depth(vi) > BFS-depth(ui)+1. Then the alternating BFS

algorithm would not have worked correctly because it should have
reached vi from ui, so that cannot happen.

• Case 2: BFS-depth(vi) < BFS-depth(ui)+1. Then it is possible to
construct an augmenting path of length less than l (go along the
shortest alternating path from an unmatched node u to vi instead of
using p to reach vi), also contradicting our assumption that the
alternating BFS algorithm works correctly.

04.12.2017 Chapter 5 36

Shortest augmenting Paths
Corollary 5.18: In bipartite graphs, a maximum

matching can be computed in O(n (n+m)) time.

Is this also possible for arbitrary graphs?

Yes, but it´s much more complicated:
• Vijay V. Vazirani. A theory of alternating paths and

blossoms for proving correctness of the O(V E)
general graph maximum matching algorithm.
Combinatorica 14(1), pp. 71-109 (1994).

04.12.2017 Chapter 5 37

Matching in arbitrary Graphs

Problem: BFS in bipartite graph is not
applicable in general graphs.

Example:

04.12.2017 Chapter 5 38

1 2 3

4

5

6

: current matching

Matching in arbitrary Graphs

Alternating BFS from 1 via node 4:
misses augmenting path 1-2-3-5-4-6 since
4 has already been visited

Example:

04.12.2017 Chapter 5 39

1 2 3

4

5

6

: current matching

Matching in arbitrary Graphs

If we allow nodes to be visited multiple
times, then there are other problems

Example:

04.12.2017 Chapter 5 40

1 2 3

4

5
: current matching

6

Matching in arbitrary Graphs

Then it seems that 1-2-3-4-5-3-2-6 is an
augmenting path although the example
below does not contain any.

04.12.2017 Chapter 5 41

1 2 3

4

5
: current matching

6

Matching in arbitrary Graphs
Edmonds´ Algorithm:
• Build a tree of alternating paths via alternating BFS.
• The root and all nodes of even distance from the root are the outer nodes.
• The other nodes are the inner nodes.

04.12.2017 Chapter 5 42

o
i

o
i o

i o

i o: outer, i: inner

Matching in arbitrary Graphs
Edmonds´ Algorithm:
• Build a tree of alternating paths via alternating BFS.
• The root and all nodes of even distance from the root are the outer nodes.
• The other nodes are the inner nodes.
• If the search ends in an unmatched inner node, then there is an augmenting

path to that node, as one can easily check.

04.12.2017 Chapter 5 43

o
i

o
i o

i o

i

Matching in arbitrary Graphs
Edmonds´ Algorithm:
• Build a tree of alternating paths via alternating BFS.
• The root and all nodes of even distance from the root are the outer nodes.
• The other nodes are the inner nodes.
• If the search ends in an unmatched inner node, then there is an augmenting

path to that node, as one can easily check.
• If the BFS is currently at an outer node u, then all unmatched edges {u,v} for

some node v that is not already in the tree are added to the tree. Such a
node v is then an inner node. If v is not matched, we have found an
augmenting path. Otherwise, if w is not already in the tree, we also add the
unique matching edge {v,w} to the tree and declare w an outer node.

04.12.2017 Chapter 5 44

o i o i o
u

i
v

o
w

Matching in arbitrary Graphs
Edmonds´ Algorithm:
• Build a tree of alternating paths via alternating BFS.
• The root and all nodes of even distance from the root are the

outer nodes.
• The other nodes are the inner nodes.
• If the search ends in an unmatched inner node, then there is

an augmenting path to that node, as one can easily check.
• If the BFS is currently at an outer node u, then all unmatched

edges {u,v} for some node v that is not already in the tree are
added to the tree. Such a node v is then an inner node. If v is
not matched, we have found an augmenting path. Otherwise,
if w is not already in the tree, we also add the unique
matching edge {v,w} to the tree and declare w an outer node.

• If for some outer node u an edge {u,v} is found where v is
already an outer node, then we have a cycle.

04.12.2017 Chapter 5 45

Matching in arbitrary Graphs
• If for some outer node u an edge {u,v} is found where v

is already an outer node, then we have a cycle, which is
also called a blossom.

• The cycle will then be merged into a single outer node,
and we continue with the BFS.

Example:

04.12.2017 Chapter 5 46

o i o i o

i
o

o
io: outer, i: inner

blossom
u

v

base of blossom

Matching in arbitrary Graphs
• If for some outer node u an edge {u,v} is found where v

is already an outer node, then we have a cycle, which is
also called a blossom.

• The cycle will then be merged into a single outer node,
and we continue with the BFS.

Example:

04.12.2017 Chapter 5 47

o i o i

o: outer, i: inner

merge all nodes
and edges inside
blossom into an
outer node

• If for some outer node u an edge {u,v} is found where v
is already an outer node, then we have a cycle, which is
also called a blossom.

• The cycle will then be merged into a single outer node,
and we continue with the BFS.

Example:

Matching in arbitrary Graphs

04.12.2017 Chapter 5 48

o i o i

o: outer, i: inner

o

resulting graph: contracted graph

Matching in arbitrary Graphs
Lemma 5.19: The contracted graph G´ has an augmenting
path if and only if the original graph G has an augmenting
path.
Proof sketch:
Invariant: for each contracted node, there is an internal
alternating path from its base to any of its edges, starting
with a non-matched and ending with a matched edge

04.12.2017 Chapter 5 49

o i o i o

o: outer, i: inner

Matching in arbitrary Graphs
Invariant: for each contracted node, there is an internal
alternating path from its base to any of its edges, starting
with a non-matched and ending with a matched edge.

Example: case 1

04.12.2017 Chapter 5 50

o i o i o

i
o

o
io: outer, i: inner

blossom
u

v

base of blossom

trivial case: edge
leaves base

Matching in arbitrary Graphs
Invariant: for each contracted node, there is an internal
alternating path from its base to any of its edges, starting
with a non-matched and ending with a matched edge.

Example: case 2

04.12.2017 Chapter 5 51

o i o i o

i
o

o
io: outer, i: inner

blossom
u

v

base of blossom

Matching in arbitrary Graphs
Invariant: for each contracted node, there is an internal
alternating path from its base to any of its edges, starting
with a non-matched and ending with a matched edge.

Example: case 3

04.12.2017 Chapter 5 52

o i o i o

i
o

o
io: outer, i: inner

blossom
u

v

base of blossom

Matching in arbitrary Graphs
Invariant: for each contracted node, there is an internal
alternating path from its base to any of its edges, starting
with a non-matched and ending with a matched edge.

Example: case 4

04.12.2017 Chapter 5 53

o i o i o

i
o

o
io: outer, i: inner

blossom
u

v

base of blossom

Matching in arbitrary Graphs
Invariant: for each contracted node, there is an internal
alternating path from its base to any of its edges, starting
with a non-matched and ending with a matched edge.

Example: case 5

04.12.2017 Chapter 5 54

o i o i o

i
o

o
io: outer, i: inner

blossom
u

v

base of blossom

Matching in arbitrary Graphs
Invariant: for each contracted node, there is an internal
alternating path from its base to any of its edges, starting
with a non-matched and ending with a matched edge.

The base of a blossom can also be the starting point of an
augmenting path.

04.12.2017 Chapter 5 55

o

i
o

o
i

blossom
u

v

base of blossom

Matching in arbitrary Graphs
Example:

BFS from node 1 yields:

04.12.2017 Chapter 5 56

1 2 3 4

57 6 10

8 9

1 2 3 4 5 10

9

6 8

base of blossom

Matching in arbitrary Graphs
Example:

BFS from node 1 yields:

04.12.2017 Chapter 5 57

1 2 3 4

57 6 10

8 9

1 2 3 4 5,10,9 6

8

base of blossom

Matching in arbitrary Graphs
Example:

BFS from node 1 yields:

04.12.2017 Chapter 5 58

1 2 3 4

57 6 10

8 9

1 2 3 4 5,6,8,10,9 7

Matching in arbitrary Graphs
Example:

Alternative creation of blossom:

04.12.2017 Chapter 5 59

1 2 3 4

57 6 10

8 9

1 2 3 4 5 10

9

6 8

base of blossom

Matching in arbitrary Graphs
Example:

Unshrinking the nodes results in the following augm. path:

04.12.2017 Chapter 5 60

1 2 3 4

57 6 10

8 9

1 2 3 4 5 10 9 8 6 7

Unshrinking:

Problem: unshrink the blossoms to find augmenting path.

Matching in arbitrary Graphs

04.12.2017 Chapter 5 61

1 2 3 4

57 6 10

8 9

base of blossom

exit node

Unshrinking:

Solution: recursively find an augmenting path from base of
blossom to the exit node.

Matching in arbitrary Graphs

04.12.2017 Chapter 5 62

1 2 3 4

57 6 10

8 9

base of blossom

exit node

Unshrinking:

Solution: recursively find an augmenting path from base of
blossom to the exit node.

Matching in arbitrary Graphs

04.12.2017 Chapter 5 63

1 2 3 4

57 6 10

8 9

base of blossom

exit node

Unshrinking:

Solution: recursively find an augmenting path from base of
blossom to the exit node.

Easy because only blossom edges need to be considered!

Matching in arbitrary Graphs

04.12.2017 Chapter 5 64

1 2 3 4

57 6 10

8 9
exit node

Matching in arbitrary Graphs
Edmond´s algorithm:

M:=∅
repeat ∃augmenting P w.r.t. M do

search for an augmenting path P w.r.t. M using Edmond`s
blossom-based alternating BFS algorithm
M:=M⊖P

output M

Runtime:
• The while-loop is executed at most n times.
• The blossom-based alternating BFS algorithm can be implemented

in O(n+m) time.
Therefore, a runtime of O(n⋅(n+m)) is possible.

04.12.2017 Chapter 5 65

Matching in arbitrary Graphs
The Hopcroft-Karp approach can also be used for arbitrary graphs:

M:=∅
while ∃augmenting path w.r.t. M do

- l:=length of shortest augmenting path w.r.t. M
- determine w.r.t. „⊆“ maximal set of node-disjoint augmenting
paths Q1,...,Qk w.r.t. M that have length l

- M:=M⊖Q1⊖ ... ⊖Qk

• A runtime of O(m) is possible per round, resulting in an overall
runtime of O(m⋅ n) .

• Details can be found, for example, in:
Paul Peterson and Michael Loui. The general maximum matching
algorithm of Micali and Vazirani. Algorithmica 3:511-533, 1988.

04.12.2017 Chapter 5 66

04.12.2017 Chapter 5 67

Next Chapter

Network flow…

	Fundamental Algorithms��Chapter 5: Matchings
	Basic Notation
	Basic Notation
	Basic Notation
	Foundations
	Foundations
	Foundations
	Foundations
	Foundations
	Foundations
	Foundations
	Foundations
	Foundations
	Foundations
	Foundations
	Foundations
	Foundations
	Foundations
	Foundations
	Matching in Bipartite Graphs
	Matching in Bipartite Graphs
	Matching in Bipartite Graphs
	Matching in Bipartite Graphs
	Foundations
	Foundations
	Foundations
	Shortest augmenting Paths
	Shortest augmenting Paths
	Shortest augmenting Paths
	Shortest augmenting Paths
	Shortest augmenting Paths
	Shortest augmenting Paths
	Shortest augmenting Paths
	Shortest augmenting Paths
	Shortest augmenting Paths
	Shortest augmenting Paths
	Shortest augmenting Paths
	Matching in arbitrary Graphs
	Matching in arbitrary Graphs
	Matching in arbitrary Graphs
	Matching in arbitrary Graphs
	Matching in arbitrary Graphs
	Matching in arbitrary Graphs
	Matching in arbitrary Graphs
	Matching in arbitrary Graphs
	Matching in arbitrary Graphs
	Matching in arbitrary Graphs
	Matching in arbitrary Graphs
	Matching in arbitrary Graphs
	Matching in arbitrary Graphs
	Matching in arbitrary Graphs
	Matching in arbitrary Graphs
	Matching in arbitrary Graphs
	Matching in arbitrary Graphs
	Matching in arbitrary Graphs
	Matching in arbitrary Graphs
	Matching in arbitrary Graphs
	Matching in arbitrary Graphs
	Matching in arbitrary Graphs
	Matching in arbitrary Graphs
	Matching in arbitrary Graphs
	Matching in arbitrary Graphs
	Matching in arbitrary Graphs
	Matching in arbitrary Graphs
	Matching in arbitrary Graphs
	Matching in arbitrary Graphs
	Next Chapter

