Advanced Algorithms

WS 2019

Homework Assignment 1

Problem 1:

A ship enters some harbor and 40 sailors leave it to enjoy themselves. In the night, they all come back, but they are so drunk that each of them picks a random cabin out of the 40 cabins uniformly and independently at random. What is the expected number of sailors that fall asleep in their own cabin?

Problem 2:

Consider a random experiment Ω that can be represented as $\Omega=\Omega_{1} \times \Omega_{2}$ with probability distributions $p_{1}: \Omega_{1} \rightarrow[0,1]$ and $p_{2}: \Omega_{2} \rightarrow[0,1]$ and the property that $\operatorname{Pr}[w]=p_{1}\left(w_{1}\right) \cdot p_{2}\left(w_{2}\right)$ for all $w=\left(w_{1}, w_{2}\right) \in \Omega$. Show that then for any two events $A_{1} \subseteq \Omega_{1}$ and $A_{2} \subseteq \Omega_{2}$ it holds for $A_{1}^{\prime}=A_{1} \times \Omega_{2}$ and $A_{2}^{\prime}=\Omega_{1} \times A_{2}$ that

$$
\operatorname{Pr}\left[A_{1}^{\prime} \cap A_{2}^{\prime}\right]=\operatorname{Pr}\left[A_{1}^{\prime}\right] \cdot \operatorname{Pr}\left[A_{2}^{\prime}\right]=\operatorname{Pr}\left[A_{1}\right] \cdot \operatorname{Pr}\left[A_{2}\right] .
$$

Problem 3:

Show that for any random variable $X: \Omega \rightarrow \mathbb{N}, \mathbb{E}[X]=\sum_{x \in \mathbb{N}} \operatorname{Pr}[X \geq x]$.

Problem 4:

Prove Theorem 1.5.

