Prof. Dr. Christian Scheideler Universität Paderborn

Advanced Algorithms WS 2019

Homework Assignment 11

Problem 28:

Let S be a set of size n and $\phi: 2^S \to \mathbb{R}$ be a function that maps any set $R \subseteq S$ to some value $\phi(R)$. Define

$$V(R) := \{s \in S \setminus R \mid \phi(R \cup \{s\}) \neq \phi(R)\}$$

$$X(R) := \{s \in R \mid \phi(R \setminus \{s\}) \neq \phi(R)\}$$

V(R) is the set of violators of R and X(R) is the set of extreme elements in R. Certainly,

s violates $R \Leftrightarrow s$ is extreme in $R \cup \{s\}$

For a random subset $R \subseteq S$ of size r we define the random variables $V_r = |V(R)|$ and $X_r = |X(R)|$. Use your insights from Chapter 7 to show: For all $0 \leq r \leq n$

For all $0 \le r < n$,

$$\frac{\mathbb{E}[V_r]}{n-r} = \frac{\mathbb{E}[X_{r+1}]}{r+1}$$

Problem 29:

A violator space is a pair (H, V) where H is a finite set and V is mapping $2^H \to 2^H$ such that the following two conditions are fulfilled:

- Consistency: For all $G \subseteq H$, $G \cap V(G) = \emptyset$.
- Locality: For all $F \subseteq G \subseteq H$ where $G \cap V(F) = \emptyset$, V(G) = V(F).

Show that any violator space (H, V) satisfies monotonicity defined as follows:

• Monotonicity: V(F) = V(G) implies V(E) = V(F) = V(G) for all sets $F \subseteq E \subseteq G \subseteq H$.

In fact, violator spaces are the most general form of abstract optimization problems to which Clarkon's algorithms can be applied.

Problem 30:

Consider any integer linear program P with objective function $f(x) = c^T \cdot x$ and constraints $Ax \leq b$ that has a finite number of solutions. Let #P be the problem of counting the number of feasible solutions for P, i.e., the number of vectors $x \in \mathbb{Z}^n$ that satisfy $Ax \leq b$. Show that if #P can be solved in polynomial time then the optimal solution of P can be found in polynomial time.

Hint: You may assume that any x satisfying $Ax \leq b$ only consists of values x_i where $|x_i|$ is at most exponentially large in the input size.

Problem 31:

Prove Theorem 8.3.