Advanced Algorithms

WS 2019

Homework Assignment 2

Problem 5:

Suppose that we pick $k \leq n$ out of n chairs at some round table uniformly at random and assign them to k people. What is the expected number of people that do not have a direct table neighbor?
Hint: recall that there are $\binom{n}{k}$ ways of picking k of n chairs for the k people. Use indicator variables and the linearity of expectation to compute the expected number of people without a neighbor.

Problem 6:

Prove the second half of the Chernoff inequality, i.e., for all $0<\delta<1$,

$$
\operatorname{Pr}[X \leq(1-\delta) \mu] \leq\left(\frac{e^{-\delta}}{(1-\delta)^{1-\delta}}\right)^{\mu} \leq e^{-\delta^{2} \mu / 2}
$$

Hint: Use the exponential function $g(x)=e^{-h \cdot x}$ and set $h=-\ln (1-\delta)$.

Problem 7:

Consider an arbitrary decision problem P (i.e., there are only outputs of the form "YES" or "NO"). Suppose that we have a randomized algorithm A for P with the following property:

- For all inputs $x \in P, \operatorname{Pr}[A(x)=" N O "] \leq 1 / 3$ and
- for all inputs $x \notin P, \operatorname{Pr}[A(x)=" Y E S "] \leq 1 / 3$.

In other words, the error probability of A is at most $1 / 3$. Show that by executing $A O(\log n)$ times and using an appropriate decision rule based on its outputs, one can reduce the error probability to at most $1 / n$.

