Advanced Algorithms WS 2019 Homework Assignment 3

Problem 8:

Prove Lemma 2.9.

Problem 9:

In the well-known skip list data structure, a set of n elements is arranged in a set of sorted lists L_0, L_1, L_2, \ldots , where L_0 is the sorted list containing all elements. In addition to that, every element e_i chooses a random bit vector x_i , and element e_i participates in list L_k if and only if the first k bits in x_i are 1.

- (a) What is the expected index of the highest list that element e_i participates in?
- (b) Show that with high probability (i.e., a probability of at least 1 1/n) the highest index k of a list L_k that contains elements is $O(\log n)$.
- (c) Propose a search operation that would reach any element in (expected) $O(\log n)$ time when starting with the first element in L_0 . (A formal analysis of the runtime is not needed.)

Problem 10:

Consider the situation that we have n processes, where process i initially stores some number $x_i \in \mathbb{N}$. The goal for the n processes is to compute the minimum of these numbers. In order to do so, they execute the following algorithm in synchronized rounds:

In each round, each process *i* contacts a process *j* uniformly and independently at random and requests the number x_j currently stored in *j*. It then sets $x_i := \min\{x_i, x_j\}$.

Our goal is to prove that at most $O(\log n)$ rounds are needed till all processes know the minimum. For that we separate the analysis into three stages, where the following needs to be shown:

- (a) With probability at least 1 1/n, after $O(\log n)$ rounds at least $c \log n$ many processes will know the minimum (where c is a sufficiently large constant so that (b) works).
- (b) If at the beginning of a round, k many processes know the minimum, where $c \log n \le k \le n/2$, then with probability at least 1 1/n at least (5/4)k processes will know the minimum at the end of the round.
- (c) If at the beginning of a round, k many processes do not know the minimum yet, where $k \leq n/2$, then with probability at least 1 1/n at most (3/4)k processes will not know the minimum yet at the end of the round.

Hint: properly define binary random variables and use the Chernoff bounds in each stage.