Advanced Algorithms

WS 2019

Homework Assignment 3

Problem 8:

Prove Lemma 2.9.

Problem 9:

In the well-known skip list data structure, a set of n elements is arranged in a set of sorted lists $L_{0}, L_{1}, L_{2}, \ldots$, where L_{0} is the sorted list containing all elements. In addition to that, every element e_{i} chooses a random bit vector x_{i}, and element e_{i} participates in list L_{k} if and only if the first k bits in x_{i} are 1 .
(a) What is the expected index of the highest list that element e_{i} participates in?
(b) Show that with high probability (i.e., a probability of at least $1-1 / n$) the highest index k of a list L_{k} that contains elements is $O(\log n)$.
(c) Propose a search operation that would reach any element in (expected) $O(\log n)$ time when starting with the first element in L_{0}. (A formal analysis of the runtime is not needed.)

Problem 10:

Consider the situation that we have n processes, where process i initially stores some number $x_{i} \in \mathbb{N}$. The goal for the n processes is to compute the minimum of these numbers. In order to do so, they execute the following algorithm in synchronized rounds:
In each round, each process i contacts a process j uniformly and independently at random and requests the number x_{j} currently stored in j. It then sets $x_{i}:=\min \left\{x_{i}, x_{j}\right\}$.
Our goal is to prove that at most $O(\log n)$ rounds are needed till all processes know the minimum. For that we separate the analysis into three stages, where the following needs to be shown:
(a) With probability at least $1-1 / n$, after $O(\log n)$ rounds at least $c \log n$ many processes will know the minimum (where c is a sufficiently large constant so that (b) works).
(b) If at the beginning of a round, k many processes know the minimum, where $c \log n \leq$ $k \leq n / 2$, then with probability at least $1-1 / n$ at least $(5 / 4) k$ processes will know the minimum at the end of the round.
(c) If at the beginning of a round, k many processes do not know the minimum yet, where $k \leq n / 2$, then with probability at least $1-1 / n$ at most $(3 / 4) k$ processes will not know the minimum yet at the end of the round.

Hint: properly define binary random variables and use the Chernoff bounds in each stage.

