
6 Randomized metric reduction
In this chapter we are going to examine a randomized technique to embed an arbitrary metric into a tree-metric with low
distortion. The technique presented here, which is based on Bartals work, was developed by Fakcharoenphol, Rao and
Talwar [4] and is suitable for a large class of combinatorial optimization problems. For all of the applications presented
here, no better approximation algorithms are known so far.

6.1 Notation
A metric (V, d) is defined by a set of points V (also called nodes) and a distance measure d with the following properties

1. d(v, v) = 0 for all v ∈ V ,

2. d(v, w) > 0 for all v, w ∈ V with v 6= w,

3. d(v, w) = d(w, v) for all v, w ∈ V (symmetry), and

4. d(u,w) ≤ d(u, v) + d(v, w) for all u, v, w ∈ V (triangle inequality).

W.l.o.g. let the minimum distance of two nodes be 1, and let ∆ be the diameter of the metric (i.e., the maximum distance
of all pairs of nodes). Further, we assume w.l.o.g. that ∆ = 2δ for some δ ∈ N.

A metric (V, d′) dominates another metric (V, d) if for all v, w ∈ V , d′(v, w) ≥ d(v, w). The goal is to find a
dominating tree metric for any given metric.

Let S be a family of metrics over V , and let D be a probability distribution over S . We say that (S,D) approximates
metric (V, d) α-probabilistically if every metric in S dominates (V, d) and for every pair u, v of nodes in V it holds that
Ed′∈(S,D)[d

′(u, v)] ≤ α · d(u, v).
An r-decomposition of (V, d), with r ∈ N, is a partition of V into groups such that for every group G there is a node

v ∈ V with d(v, w) < r for all w ∈ G (i.e., the radius of the group is less than r and therefore its diameter is less than 2r).
A hierarchical decomposition of (V, d) is a series of δ + 1 decompositions D0, D1, . . . , Dδ with the property that

• Dδ = {V } is the trivial partition (all nodes are in one group), and

• Di is a 2i-decomposition and refinement of Di+1 (i.e., groups in Di+1 are divided into further subgroups).

Each group in D0 has radius less than 1 and therefore consists of a single node.

6.2 From decompositions to trees
A hierarchical decomposition defines a laminar family (i.e., a set of subsetsF ⊆ 2V with the property that for allA,B ∈ F ,
A ⊆ B or B ⊆ A or A ∩ B = ∅) and can be represented by a decomposition tree as follows. For every i, every group
G ∈ Di represents a node in that tree and the children of G are all groups G′ ∈ Di−1 that are contained in G. The root is
the node representing V while the leaves are formed by groups containing only a single node (cf. Fig. 1).

Let the edges of a node S ∈ Di to any of its children in the decomposition tree T have length 2i (which is an upper
bound for the radius of S). This induces a distance function dT (·, ·) on V with dT (v, w) being equal to the length of the
unique path from the node {v} ∈ D0 to the node {w} ∈ D0 in T . It is not difficult to check that dT is a metric. Further,
dT (v, w) ≥ d(v, w) for all v, w ∈ V since the least common ancestor of v and w in T must represent a set with diameter
at least d(v, w). In the following we will prove upper bounds for dT (v, w) as well. A pair (v, w) is at level i if v and w
appear the last time together in a group G ∈ Di. If (v, w) is at level i, then dT (v, w) = 2

∑i
j=1 2j ≤ 2i+2.

6.3 Decomposition of the set of nodes
Consider the following random experiment to create a hierarchical decomposition of (V, d), where V = {v1, . . . , vn}.
Choose a permutation π uniformly at random out of the set of all permutations of {1, . . . , n}, and choose β uniformly at
random in [1, 2]. Then, for every i, we compute Di out of Di+1 as follows.

Set βi := 2i−1β. Let S be a group in Di+1. Every node u ∈ S gets assigned to the first node v ∈ V (regarding π)
which is closer than βi to u. This node is declared as u’s center. In this way, S is cut into several groups in Di. Note that
the center of a group S does not have to be part of S and that there might be several groups in Di with the same center,

1

Figure 1: From a laminar family to a decomposition-tree.

which is the case if the nodes already belong to different groups in Di+1. Furthermore, βi ≤ 2i and therefore the radius
of all groups in Di is less than 2i which leads to a 2i-decomposition. The formal decomposition algorithm is shown in
Figure 2. We note that a group may stop participating in lower levels once it has reached a size of 1, so it will be a leaf of
the decomposition tree representing the node it consists of.

Algorithm Partition(V, d):
choose a random permutation π of {1, . . . , n}
choose β uniformly at random from [1, 2]
Dδ := {V }; i := δ − 1
while Di+1 contains a group with more than one node do

βi := 2i−1β
for ` := 1 to n do

for every S ∈ Di+1 do
create a new group with all thus far unassigned nodes in S
which are closer to vπ(`) than βi

i := i− 1

Figure 2: The partitioning algorithm

Algorithm 2 can be implemented in a straight-forward way with runtime O(n3). With specific data structures one can
decrease the runtime to O(n2), which is linear in the input size since d usually needs complexity Θ(n2) to be described
properly.

Fix a pair (u, v). Now, we show that the expectation of dT (u, v) is bounded by O(d(u, v) log n). Considering the
discussion above we get

E[dT (u, v)] ≤
δ∑
i=0

P[(u, v) is at level i] · 2i+2.

Certainly, if d(u, v) ≥ 2i+1, nodes u and v cannot be contained in the same group in Di. In other words, (u, v) cannot be
at level i. Let i∗ be the smallest i with d(u, v) < 2i+1. Then P[(u, v) is at level i] = 0 for all i < i∗. Thus, it remains to
bound this probability for i ≥ i∗. For any i∗ ≤ j ≤ δ let Ku

j be the set of nodes in V which are closer than 2j to node u.
Further, let kuj = |Ku

j |. (We set kuj = 0 for j < i∗.)
Consider some fixed i ≥ i∗. We say that vπ(`) decides the pair (u, v) at level i if it is the first center that node u or

v is assigned to at level i. Note that once π and β are fixed, this center is unique and well defined. Further, we say that

2

vπ(`) cuts the pair (u, v) at level i if it decides (u, v) at level i and exactly one node from u and v gets assigned to vπ(`).
Obviously, if (u, v) is at level i+ 1, then there must be a node w that cuts (u, v) in level i. Therefore it holds

P[(u, v) is at level i+ 1] = P[∃w : w cuts (u, v) at level i]

≤
∑
w

P[w cuts (u, v) at level i].

We say that a center w cuts node u from (u, v) at level i if w cuts the pair (u, v) and u is being assigned to w. For each
center w we limit the probability for w to cut u from (u, v) at level i. For this we order the centers in Ku

i in ascending
distance to u. Suppose this order is given by w1, w2, . . . , wkui . In this case, a center ws is able to cut u from (u, v) only if
the following holds:

1. d(u,ws) < βi,

2. d(v, ws) ≥ βi, and

3. ws decides (u, v).

From the first two requirements it follows that βi must be in the interval [d(u,ws), d(v, ws)]. Due to the triangle inequality
it holds d(v, ws) ≤ d(v, u) + d(u,ws) and therefore the length of the interval [d(u,ws), d(v, ws)] is at most d(u, v). Since
βi is chosen uniformly at random from [2i−1, 2i], the probability for βi to lie in the said interval is at most d(u, v)/2i−1.

Next, we can deduce a probability from requirement (3). Due to the definition of Ku
i it holds that d(u,ws) < βi and

therefore d(u,ws′) < βi for all s′ ≤ s. The probability that (u, v) is decided by center ws is at most 1/s since π is a
random permutation.

Note that the first probability bound only depends on β while the second one only depends on the choice of π. Thus,
both probability bounds hold independently and we obtain the following inequalities.

P[(u, v) is at level i+ 1] ≤
kui∑
s=1

(d(u, v)/2i−1) · 1

s
+

kvi∑
s=1

(d(u, v)/2i−1) · 1

s

≤ d(u, v)

2i−1
(ln kui + 1 + ln kvi + 1) ≤ d(u, v)(lnn+ 1)

2i−2

Hence,

E[dT (u, v)] ≤
δ∑
i=0

P[(u, v) is at level i] · 2i+2

≤
δ∑

i=i∗

d(u, v)(lnn+ 1)

2i−3
· 2i+2 = O(δ log n · d(u, v)).

Thus, the expected length of dT (u, v) is in O(log ∆ · log n · d(u, v)).

To show the bound of O(log n) we observe that the amount of centers over all δ levels is n. A more detailed analysis
of the procedure above will then provide the desired result, as shown next.

Let us fix a i ≥ i∗ + 3. Due to the definition of i∗ it follows that d(u, v) < 2i−2. Additionally, for any w ∈ Ku
i−2 it

holds d(v, w) ≤ d(v, u) + d(u,w) < 2i−2 + 2i−2 = 2i−1 ≤ βi. Hence, w cannot be the center cutting u from (u, v) since
this would require the three requirements above to be fulfilled. Therefore, no center of w1, w2, . . . , wkui−2

is able to cut u
from (u, v) at level i. It follows that the probability for u to be cut from (u, v) is at most

kui∑
s=kui−2+1

(d(u, v)/2i−1) · 1

s
= (d(u, v)/2i−1) · (Hkui

−Hkui−2
)

where Hn =
∑n
i=1

1
i is the harmonic number. Since (u, v) is cut if either u or v gets cut from (u, v), the probability for

the pair (u, v) to be cut in level i is upper bounded by

d(u, v)

2i−1
· [Hkui

+Hkvi
−Hkui−2

−Hkvi−2
].

3

For i ∈ {i∗, . . . , i∗ + 2} we can bound this probability by the formula

d(u, v)

2i−1
· (Hkui

+Hkvi
) ≤ d(u, v)

2i−1
· 2Hn.

The expectation of dT (u, v) is therefore

E[dT (u, v)] ≤
δ∑
i=0

P[(u, v) is at level i] · 2i+2

≤
i∗+2∑
i=i∗

2Hn ·
d(u, v)

2i−1
· 2i+2

+

δ∑
i=i∗+3

[Hkui
+Hkvi

−Hkui−2
−Hkvi−2

] · d(u, v)

2i−1
· 2i+2

≤ 8d(u, v)(3 · 2Hn +Hkuδ
+Hkvδ

+Hkuδ−1
+Hkvδ−1

)

≤ 8d(u, v) · 10Hn

≤ 80(lnn+ 1) · d(u, v).

This shows that the expected value of dT (u, v) is at most O(d(u, v) · log n) for any pair (u, v). Hence, it holds:

Theorem 6.1 The probability distribution over the tree metric defined by the partitioning algorithmO(log n)-probabilistically
approximates metric d.

6.4 Applications
Many problems are much easier to solve in tree metrics than in others. A few of these are presented below.

The k-median problem

An instance of the k-median problem consists of a set of points V = {v1, . . . , vn} and a metric d. The goal is to find a set
M ⊆ V of k median points such that the sum of the distances of all nodes to its closest median-points is minimal, i.e.

n∑
i=1

min
w∈M

d(vi, w).

For trees we know optimal algorithms. In the case of a tree-metric we assume that we are given an undirected graph
G = (V,E) with edge lengths c : E → R+, where G represents a tree, and the distance d(u, v) for an arbitrary pair
u, v ∈ V is defined as the length of the unique path from u to v in G. For this case Tamir [6] presented a precise algorithm,
which is based on dynamic programming and runs in time O(k ·n2). If k is constant, even precise algorithms with runtime
O(n · polylog(n)) are known [2]. Hence, we obtain the following result.

Theorem 6.2 With Tamir’s algorithm one can solve the k-median problem for arbitrary metrics in time O(k · n2) with an
expected approximation ratio of O(log n).

Proof. Consider the following algorithm:
Given an arbitrary instance (V, d) where d is a metric, reduce d to a tree metric d′ using algorithm Partition(V, d), solve

the problem on d′ using Tamir’s algorithm, and return the objective value obtained by that algorithm.
As we will show, this algorithm has an expected approximation ratio of O(log n), which proves the theorem. For a

given metric d let

OPTd = min
M⊆V,|M |=k

n∑
i=1

min
w∈M

d(vi, w)

be the optimal value of the k-median problem regarding this metric. Let B be a family of tree metrics over V and D a
probability distribution over B. Assume (B,D) approximates (V, d) α-probabilistically. Then it holds for any d′ ∈ B that

4

(V, d′) dominates (V, d) and thus OPTd′ ≥ OPTd. Furthermore, for the optimal set of medians M concerning d it holds
that OPTd′ ≤

∑n
i=1 minw∈M d′(vi, w). Hence,

E[OPTd′] ≤ E

[
n∑
i=1

min
w∈M

d′(vi, w)

]

=

n∑
i=1

E[min
w∈M

d′(vi, w)]

(∗)
≤

n∑
i=1

min
w∈M

E[d′(vi, w)]

≤
n∑
i=1

min
w∈M

α · d(vi, w) = α ·OPTd.

Inequality (∗) follows since it is known that for any matrix A = (ai,j) ∈ R(m,k),

m∑
i=1

min{ai,1, . . . , ai,k} ≤ min

{
m∑
i=1

ai,1, . . . ,

m∑
i=1

ai,k

}
.

Hence, E[OPTd′] ∈ [OPTd, α ·OPTd]. Therefore, the expected approximation ratio of our algorithm is α = O(log n).
If a k-median set is required instead of a number, we can just output the median set M ′ found for d′, because due to

the fact that d′ dominates d it holds that

n∑
i=1

min
w∈M ′

d(vi, w) ≤
n∑
i=1

min
w∈M ′

d′(vi, w) = OPTd′

so the objective value for M ′ w.r.t. d is at most as high as the objective value for M ′ w.r.t. d′, which means that on
expectation, it is still at most O(OPTd log n). ut

The group-Steiner-tree problem

An instance of the group-Steiner-tree problem consists of a connected undirected graph G = (V,E) with edge costs given
by c : E → R+ and k subsets V1, . . . , Vk ⊆ V . The goal is to find a tree T = (V ′, E′) inG containing at least one element
of each subset and having minimum edge costs

∑
e∈E′ c(e).

Garg, Konjevod and Ravi [5] presented aO(log k log n)-approximation algorithm for trees, which implies the following
result for arbitrary graphs.

Theorem 6.3 Using the GKR-algorithm one can solve the group-Steiner-tree problem for arbitrary graphs in polynomial
time with an expected approximation ratio of O(log k log2 n).

Proof. Let us use the same approach as in the previous problem:
Given an arbitrary instance (G, c, V1, . . . , Vk), define d(v, w) as the length of the shortest path from v to w in G with

respect to the edge costs c. Then reduce d to a tree metric d′ using algorithm Partition(V, d), where d′ represents the shortest
path metric in the decomposition tree DT = (V ′, E′). Let c′ : E′ → N denote the costs of the edges of DT as defined in
Section 5.2. Then we use the GKR-algorithm to solve the group-Steiner-tree problem for (DT, c′, V1, . . . , Vk) where the
sets Vi refer to the singletons at level D0 in DT , and return the objective value obtained by that algorithm.

As we will show, this algorithm has an expected approximation ratio ofO(log k log2 n), which proves the theorem. Let
T = (U,F) be the optimal group-Steiner-tree in G, and let T be organized in a unique way from some fixed node r ∈ U ,
which we declare as its root. For every i ∈ {1, . . . , k}, let vi ∈ U be the first node in Vi encountered in T when performing
an inorder traversal of T . Certainly, there must be such a node for each i, otherwise T would not be a group-Steiner-tree.
Also, all leaves in T must be one of the vi’s because otherwise T would be reducible. Suppose for simplicity that the vi’s
are visited by the inorder traversal in the order v1, v2, . . . , vk. Let p(v, w) be the unique path from v to w in T , and let

5

c(p(v, w)) be sum of the costs of the edges in p. Since the paths p(v1, v2), p(v2, v3), . . ., p(vk−1, vk), p(vk, v1) stitched
together give an Euler tour of T , it holds for vk+1 = v1 that

k∑
i=1

c(p(vi, vi+1)) = 2
∑
e∈F

c(e)

On the other hand, c(p(vi, vi+1)) ≥ d(vi, vi+1), so

k∑
i=1

c(p(vi, vi+1)) ≥
k∑
i=1

d(vi, vi+1)

which implies that
k−1∑
i=1

d(vi, vi+1) ≤ 2
∑
e∈F

c(e).

Moreover, the union of the edges on the shortest paths for the pairs (vi, vi+1) results in a connected subgraph of G with
costs at least equal to the ones of T . Hence,

∑
e∈F

c(e) ≤
k−1∑
i=1

d(vi, vi+1)

Therefore, altogether, ∑
e∈F

c(e) ≤
k−1∑
i=1

d(vi, vi+1) ≤ 2
∑
e∈F

c(e).

Now, let T ′ = (U ′, F ′) be the optimal group-Steiner-tree in the decomposition tree DT , and let w1, . . . , w` be its leaves.
Obviously, each leaf must belong to some group Vi, and each group Vi has at most one leaf in T because otherwise T ′ can
be reduced. Also, there cannot be any inner nodes of DT that belong to some Vi since the nodes in V are mapped to the
leaves of DT . Hence, ` = k. For simplicity, suppose that wi ∈ Vi.

Using the inequalities for T and the fact that d′ dominates d, it holds that

∑
e∈F ′

c′(e) ≥ 1

2

k−1∑
i=1

d′(wi, wi+1) ≥ 1

2

k−1∑
i=1

d(wi, wi+1)

≥ 1

2

∑
e∈F

c(e).

Thus, the cost of T ′ regarding d′ is at least as high as half the cost of an optimal group-Steiner-tree in G. Furthermore, for
the unique minimum tree T ′′ = (U ′′, F ′′) connecting the nodes vi, . . . , vk in DT it holds that

E[
∑
e∈F ′′

c′(e)] ≤ E[

k−1∑
i=1

d′(vi, vi+1)]

=

k−1∑
i=1

E[d′(vi, vi+1)]

≤
k−1∑
i=1

αd(vi, vi+1)

≤ 2α
∑
e∈F

c(e).

Now, let TGKR be the tree obtained by the GKR-algorithm in DT . Since the GKR-algorithm ensures that for the optimal
tree T ′ in DT ,

∑
e∈TGKR

c′(e) ≤ β
∑
e∈F ′ c

′(e) ≤ β
∑
e∈F ′′ c

′(e), where β = O(log k log n), we observe that

E[
∑

e∈TGKR

c′(e)] ∈ [
1

2

∑
e∈F

c(e), 2αβ
∑
e∈F

c(e)].

6

Therefore, we obtain a O(log k log2 n)-approximation.
If instead of the objective value we want the group-Steiner-tree as output of our algorithm, we simply output any tree

T̂ = (Û , F̂) in G containing the k leaves w1, . . . , wk of TGKR, where T̂ can be obtained from the subgraph resulting from
the union of the shortest paths for the pairs (w1, w2), (w2, w3), . . ., (wk−1, wk), (wk, w1) in G. For this tree we get

∑
e∈F̂

c(e) ≤
k∑
i=1

d(wi, wi+1) ≤
k∑
i=1

d′(wi, wi+1) ≤ 2
∑

e∈TGKR

c′(e).

So on expectation, the cost of T̂ is at most O(OPTd log k log2 n). ut

Buy en bloc network design

A problem instance consists of an undirected graph G = (V,E) with edge lengths ` : E → R+ and a set of source-target-
pairs (s, t) with flow demands d(s, t). For each source-target-pair a path through G must be chosen that can accommodate
the demand. One achieves this by buying/renting cables along the edges. Exactly k types of cable exist, where type i has
capacity ui and cost ci per unit of length. The goal is to buy/rent enough cable such that a flow of d(s, t) is possible for
every source-target-pair (s, t) with costs as low as possible.

The problem can easily be solved within anO(1)-factor in a tree since the optimal strategy is to route the flow along the
unique path from s to t for every source-target-pair (s, t), so it only remains to find the best setup of cables for every edge,
which can be seen as a variant of the knapsack problem that can be solved within an O(1)-factor. One can even design
O(1)-competitive online algorithms for this problem, as shown by Awerbuch and Azar [1]. Consequently, we obtain the
following theorem.

Theorem 6.4 By using the Awerbuch-Azar algorithm one can solve the buy en bloc network design problem for arbitrary
graphs in polynomial time with an expected approximation ratio of O(log n).

Vehicle routing

A problem instance consists of a metric (V, d). In this metric, n objects are placed which need to be transported to n
target points. This is done by a waggon driving from point to point in V with a cargo capacity of k objects. The goal is to
minimize the overall path length of the waggon needed to deliver all objects.

Charikar et al. [3] presented an O(1)-approximation algorithm for trees. Consequently, we obtain the following
theorem.

Theorem 6.5 By using the CCGG-algorithm one can solve the vehicle routing problem for arbitrary graphs in polynomial
time with an expected approximation ratio of O(log n).

References
[1] B. Awerbuch and Y. Azar. Buy-at-bulk network design. In Proc. of the 38th IEEE Symp. on Foundations of Computer

Science (FOCS), pages 542–547, 1997.

[2] R. Benkoczi and B. Bhattacharya. A new template for solving p-median problems for trees in sub-quadratic time. In
Proc. of the European Symposium on Algorithms (ESA), pages 271–282, 2005.

[3] M. Charikar, C. Chekuri, A. Goel, and S. Guha. Rounding via trees: Deterministic approximation algorithms for group
Steiner trees and k-median. In Proc. of the 30th ACM Symp. on Theory of Computing (STOC), pages 114–123, 1998.

[4] J. Fakcharoenphol, S. Rao, and K. Talwar. A tight bound on approximating arbitrary metrics by tree metrics. In Proc. of
the 35th ACM Symp. on Theory of Computing (STOC), pages 448–455, 2003.

[5] N. Garg, G. Konjevod, and R. Ravi. A polylogarithmic approximation algorithm for the group Steiner tree problem.
Journal of Algorithms, 37:66–84, 2000.

[6] A. Tamir. An o(pn2) algorithm for the p-median and related problems on tree graphs. Operations Research Letters,
19(2):59–64, 1996.

7

