We further assume \emph{asynchronous activations} for all nodes, i.e., nodes start their protocol in different rounds, as the problem would be trivial otherwise. We give an asymptotically optimal algorithm that runs in $4D + Bigl\left(1600 \\ T/4 \\rfloor\right) Bigr rfloor (C \ (T \ 04) = O(D)\ rounds, where D\ is the diameter of the network.$

Once all nodes are in sync, they beep at the same round every $T\$ rounds. The algorithm drastically improves on the O(n D)-bound of \cite{firefly_sync}. Our algorithm is very simple as nodes only have to maintain \$2\$ bits in addition to the $O(\log T)$ bits needed to maintain the clock.

Furthermore we investigate the complexity of $\end{self-stabilizing}$ solutions for the clock synchronization problem: We first show a lower bound of $\Omega(\nx \{T,n\})\$ rounds on the runtime for any such protocol.

Afterwards we present a protocol that runs in $O(\max{T,n})$ rounds using at most $O(\log(\max{T,n}))$ bits at each node, which is asymptotically optimal with regards to both, runtime and memory requirements.