We are interested in topologies in which it is possible to route a packet in a fixed number of hops until it arrives at its destination. Given a constant \$d\$, this paper introduces a new self-stabilizing protocol for the $\$ q$-ary $\$ d \$-d i m e n s i o n a l$ de Bruijn graph ($\$ q=$ lsqrt[d]\{n\}\$) that is able to route any search request in at most \$d\$ hops w.h.p., while significantly lowering the node degree compared to the clique: We require nodes to have a degree of $\$ \backslash$ mathcal $O(\backslash \operatorname{sqrt}[d]\{n\}) \$$, which is asymptotically optimal for a fixed diameter $\$ d \$$.
The protocol keeps the expected amount of edge redirections per node in
$\$ \backslash$ mathcal $O(\backslash$ sqrt $[d]\{n\})$, when the number of nodes in the system increases by factor $\$ 2^{\wedge} d \$$.
The number of messages that are periodically sent out by nodes is constant.

