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Abstract

Prototyping future Internet technologies is an important but complicated
task, mainly caused by incompatibilities to existing systems and high imple-
mentation complexity. To reduce these problems, we have developed the Future
Internet Toolbox (FIT), consisting of four frameworks that cover data transport,
information-centric networking, naming, and name resolution. These frameworks
can be used separately or can be combined to a large testbed, covering many
aspects at once. Experience has shown that FIT not only simplifies our own
prototyping activities but is also useful for other projects due to its generality.
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1 Introduction

Currently, a lot of research is done in the area of future Internet technologies. Hot topics
include information-centric networking, data transport techniques and protocols, rout-
ing schemes, resource allocation, mobility, and cooperation/coding techniques. After
developing new concepts and protocols in these areas, they have to be evaluated. Of-
ten, it is desirable to do this via prototyping and testing under real-world assumptions
in real networks. This procedure, however, is very difficult today and is often avoided
because (1) the new concepts are incompatible with existing systems or (2) it is too
costly to implement a whole prototype from scratch to evaluate a small component of
an overall architecture.

To overcome these difficulties, we developed FIT – the Future Internet Toolbox.
FIT simplifies developing future Internet prototypes and testbeds by providing a set
of frameworks, covering the following aspects of networking:

• Data transport, including related aspects like routing, resource management,
mobility, and cooperation techniques

• Naming and name resolution

• Information-centric networking, including search, publish/subscribe, caching/
storage, and information modeling

These frameworks solve both problems mentioned above as they (1) provide generic
testbeds that integrate into today’s network/system architectures and (2) provide a lot
of ready-to-use building blocks that support and ease development. The downside of
such high reusability is that frameworks always introduce a trade-off between reusabil-
ity and flexibility. Having this in mind, the main goal was to mitigate this trade-off
by designing the frameworks as generic as possible to allow implementing as many
different concepts and protocols as possible.

We developed these frameworks in the 4WARD research project [1] to build a com-
plex prototype, called NetInf [2]. The prototype focuses on information-centric net-
working and specialized data transport to fully unfold the benefits of the information-
centric network paradigm. This prototype demonstrates that our frameworks can easily
be integrated with each other to exploit synergies.

The following sections introduce the frameworks that constitute FIT. Section 2 cov-
ers information-centric networking, Section 3 our naming framework. Data transport
is addressed in Section 4 and Section 5 discusses generic name resolution.

2 Information-centric networking framework

This section will describe the Information-Centric Network (ICN) framework. We will
first describe the framework itself and will afterwards illustrate how the framework can
be used in specific information-centric architectures using the example of NetInf and
Content-Centric Networking (CCN) [3].
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2.1 Overview

Several information/content/data-centric network architectures have been proposed
lately [2, 3, 4]. To support the prototyping of ICN concepts, a framework providing
the following aspects is desirable:

• A generic, adaptable node structure implementation

• A flexible, reusable implementation of various architecture components

• Support for defining new services and protocols, incl. especially communication

Multiple testbeds like OneLab [5] exist that offer an important environment to test
ICN architectures. Those testbeds, however, do not offer support for developing new
architectures in the first place. There are generic architectures like ANA [6] that offer a
framework for developing and adapting future Internet architectures. But the scope of
ANA is too broad to provide practical and sufficient support for prototyping new ICN
architectures. There are also specialized middleware projects in the area of content-
centric networking like Juno [7]. Juno provides an adaptable middleware for content
networking that automatically (re)configures itself based on certain heterogeneity fac-
tors. It is an example of a specific, adaptable architecture of an information-centric
middleware that could benefit from the existence of a flexible framework for prototyping
ICN architectures in general, but does not provide such a framework itself.

We are not aware of a framework that focuses on prototyping ICN architectures.
Therefore, we developed the ICN framework for rapidly and easily implementing and
testing ICN designs as well as specific services and protocols.

The ICN framework solves the apparent conflict between flexibility and reusability
by recursively addressing this conflict on four different levels: the network architecture
level including communication between network nodes, the architecture of each network
node that is composed of components, the architecture of each component containing
multiple component services that implement architecture-specific services and proto-
cols, and the design of those component services. On each level, we provide reusable
structure and building blocks to accelerate the prototyping process while at the same
time providing flexibility and extensibility based on a consistent plugin concept.

Figure 1a gives an example of a node structure for a generic ICN node. The node is
composed of several components. Each component can contain a single (see Naming,
Information Model component) or multiple different implementations of its component
functionality (e.g., Resolution component).

Applications access an information-centric node via its adaptable interface. The
same interface can be used to communicate with other information-centric nodes over
the network, as illustrated at the bottom of the figure. Inter-node communication and
applications will typically access the interface in different ways. To provide a broad and
flexible mechanism to access the interface, we have implemented a layer of indirection
on top of the interface (Figure 1b) that provides access in different ways (e.g., via an
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(b) NetInf-specific node configura-
tion

Figure 1: Example testbed node configurations, consisting of adaptable components
that each contain several service incarnations like Resolution Services (RS ), Transport
Services (TS ), and Event Services (ES ).

HTTP proxy interface to connect legacy applications) and can easily be extended with
new mechanisms.

In the ICN framework, an ICN can consist of any number of diverse, custom-built
information-centric nodes as well as other, non-information-centric nodes. Thereby, we
provide flexibility in the design of an ICN architecture. In the following, we will first
discuss how to build information-centric nodes with self-defined functionality. Later
on, we will discuss how to interconnect nodes to an ICN.

Based on our own conceptual work on the NetInf prototype [8] and evaluation of
related concepts like Content-Centric Networking [3], Content-Based Networking [9],
and DONA [4], we identified the following main components of an ICN architecture:
Search, Naming, Name Resolution, Data Transport, Storage, an Event Service, and an
Information Model. The ICN framework provides ready-to-use implementations for
those components.

Each component can be adapted with architecture-specific services and protocols
based on a flexible plugin concept. Thereby, services and protocols are encapsulated
in component services. To enhance flexibility, a component can contain multiple com-
ponent services while each service fulfills the same interface but may implement and
fulfill this service in a different way. A component controller is responsible for choos-
ing between component services, and managing the order of execution. For example,
the Resolution Controller manages several Resolution Services that implement specific
name resolution mechanisms, e.g., via a DHT system or via DNS, that can be chosen
depending on the type of namespace (flat/hierarchical) to resolve. Adding a new ser-
vice to a component is done by simply plugging the new component service into the
specific component and reconfiguring the controller to include the new service.
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To support implementing architecture-specific services and protocols, the other
three frameworks included in the FIT can be used to develop custom-built component
services for the Naming component (Section 3), Transport component (Section 4), and
Name Resolution component (Section 5), illustrating the simplicity of integrating the
different FIT frameworks.

Besides the architecture of a network node, the communication between nodes is
the second main aspect of an ICN architecture. The ICN framework offers two distinct
components for implementing and testing various communication protocols. First,
the Transport component is used to implement and test communication protocols in
general. Several implementations for legacy protocols are already provided by the ICN
framework and new protocols can be implemented using the data transport framework
(Section 4). Second, as the publish/subscribe paradigm often plays an important role
in ICN [9, 2], we provide a dedicated Event component to simplify the integration of
different publish/subscribe mechanisms into the architecture.

In summary, the ICN framework provides a testbed for building custom nodes and
for interconnecting those nodes to implement and test different ICN architectures. It
has a flexible and adaptable structure, and offers ready-to-use implementations for the
main components of many ICN architectures. It also includes multiple component
service implementations for those components to accelerate the prototyping process.

2.2 Implementation

The ICN framework is consistently based on the interface design pattern for flexibility.
It is implemented in Java to allow for platform independence and a flexible choice
of devices. Special attention has been paid to the selection of libraries to make the
framework usable also on mobile devices. The code currently works on FreeBSD, Linux,
Windows, and Android.

The plugin concept is based on Google’s lightweight dependency injection frame-
work Guice [10]. Guice is used for two specific purposes. First, we use Guice for con-
structing an information-centric node from multiple components, making the overall
node architecture easily extensible and specific component implementations exchange-
able. Second, Guice is used to plug component services into components to extend
them with new service implementations.

2.3 NetInf use case

Figure 1b shows the configuration of a NetInf node created with the ICN framework.
Each component contains several specific service implementations that represent the
main services and protocols of the NetInf architecture. For example, the NetInf archi-
tecture contains multiple name resolution services in parallel that are each represented
as a Resolution Service (RS ) in the Resolution component.

The NetInf prototype also illustrates the generality of the ICN framework by in-
tegrating the NetInf architecture with another content-based network architecture,
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Figure 2: Network of information-centric nodes

SIENA [9]. SIENA is used to realize the NetInf-specific publish/subscribe communi-
cation, integrated with the NetInf information model.

Our NetInf prototype extends the information-centric node interface with three
different mechanisms to access the node interface (Figure 1b): Java applications can
simply use the provided Java interface. For applications that talk HTTP (e.g., a Web
browser plugin), we provide an HTTP proxy interface. For inter-node communication,
we provide access to the node interface via Google Protocol Buffers (Protobuf) [11].
Google Protobuf enables the simple and fast definition of custom protocol messages and
provides efficient data transfer. Many different languages like Java, Python, and C++
are supported, thereby also enabling communication between network nodes written
in different languages.

Figure 2 shows an example of several NetInf nodes that form an ICN. Some are
running client applications while others provide services like global name resolution
and search services. Communication between those nodes is based on the information-
centric node interface (implemented with NetInf-specific primitives like Get(ID), Pub-
lish(a)) and Google Protobuf.

2.4 CCN use case

A prominent proposal for an ICN architecture is the Content-Centric Networking
(CCN) [3] project. In the CCN architecture, there are at least three different types of
node: clients, servers, and routers. All three node types can be prototyped using our
generic node architecture (Figure 3). The key component of the CCN router node is the
CCN forwarding engine. It consists of two tables (Pending Interest Table (PIT ) and
Forwarding Information Base (FIB)) that are used for the CCN-specific forwarding
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Figure 3: CCN architecture implemented using the ICN framework node architecture

algorithms. Both algorithms and corresponding data structures can be implemented
as a Transport component service. The third component of the CCN forwarding engine
is the Content Store which caches data packets in the router. The Content Store can
be implemented as a Storage component service that closely interacts with the afore
mentioned Transport component service.

Another important part of the CCN architecture is the CCN naming scheme and
CCN’s data-centric security mechanisms. Naming and security will be an aspect of
router nodes as well as client and server nodes. The CCN naming scheme can be
modeled with the naming framework (Section 3) and can be integrated in our node
architecture via the naming component. The same component will include the CCN
security functionality, especially the mechanisms for “validating content” and “estab-
lishing trust” [3].

3 Naming framework

A naming framework should provide mechanisms that support a wide variety of differ-
ent naming schemes while at the same time minimizing the implementation overhead.
As a result of those considerations, our naming framework is based on a simple, yet
flexible and powerful mechanism: names are composed of a sequence of labels, each of
which is a ’labelName=labelValue’ pair. There are two ways to handle the ordering
of labels: labelNames are either themselves part of the name (Figure 4a), thereby ex-
plicitly assigning labelValues to labelNames, or labelNames are not part of the name
(Figure 4b), which then requires to define the ordering of labels in advance.

Including the labelNames in each name allows for flexibility. This makes it possible
to define naming schemes with a flexible set of labels as well as a flexible ordering
of labels. On the other hand, namespaces with compact names can be achieved by
excluding labelNames from the names and predefining an explicit label ordering. Via
those two mechanisms, our naming framework supports common naming schemes like

c© 2010 University of Paderborn.

All rights reserved.
TR-RI-10-311 Page 6



4 DATA TRANSPORT FRAMEWORK

label1=value1 & label2=value2 & label3=value3

(a) Name including label names

value1 & value2 & value3value1 & value2 & value3

(b) Name excluding label names

Figure 4: Names consist of a set of labels

IP addresses and URIs as well as complex naming schemes like the NetInf naming
scheme [2].

Some more complex naming schemes, especially in the area of information-centric
networking [2, 3], involve features like information-centric security that go far beyond
common naming schemes. To support such features, we optionally combine names with
a flexible set of metadata that can, e.g., contain security-related data like a hash value
of the content. In addition, our framework integrates implementations for security-
related algorithms like symmetric and asymmetric encryption, (self-)certification, and
public/private-key-based authentication to simplify the implementation of complex
naming schemes which include such security features.

4 Data transport framework

4.1 Overview

The main observation that triggered our work to develop a data transport framework
was the difficulty to introduce new functionality/protocols into today’s network stacks.
One reason for this is that there is no coherent way to identify entities and to manipulate
them as today’s network architecture is based on a mainly statically layered stack and
functionality is located in end systems.

To design a more flexible, powerful, and reusable data transport architecture, we
need an approach to model, design, identify, and use data flows. This approach, how-
ever, needs to be generic enough to stretch over a wide range of technology levels and
should encompass a wide range of data processing and forwarding functions in end
systems as well as in intermediate nodes.

With such a set of requirements, it is impossible to come up with the, single solution
for a one-size-fits-all flow type. Therefore, we decided to choose a design process that
combines (1) a uniform appearance and interface for all different flow types and (2)
flexibility in supporting a wide range of flow types, in as many different environments
as possible. A network architecture that fulfills these requirements is the Generic
Path (GP) architecture [12]. We use its concepts as basic building blocks for our data
transport framework.

We chose an object-oriented approach to design network components while keeping
them coherent in their interfaces and basic structures. This allows to incorporate new
networking techniques more flexibly than in today’s network architectures as networks
can be arbitrarily composed of the components. Furthermore, networks can easily be
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adapted according to any cross-layer information during runtime, thanks to the unified
interfaces. Examples for data transport aspects that have been modified/integrated
into our framework are routing, mobility [13], cooperation and coding techniques [14],
and resource allocation.

4.2 Framework components

This section introduces the components that constitute the data transport framework:
Generic Paths (GPs), Entities, Compartments (CTs), Endpoints (EPs), and Hooks.
An example of their interactions is given in Figure 5. The scenario consists of six
Entities (E1-E4, two Cores), four CTs (C1, C2, N1, N2), four EPs (EP1-EP4) forming
two GPs, and two Hooks. The GP between EP1 and EP2 in C1 (e.g., IP) is realized
by the GP between EP3 and EP4 in C2 (e.g., Ethernet).

Figure 5: Overview and interaction of GP architecture components. Entities are drawn
as rectangles, CTs as rectangles with rounded corners, EPs as squares, GPs as hori-
zontal lines, and Hooks as vertical lines.

4.2.1 Entity

An Entity is the generalization of an application that takes part in any kind of commu-
nication. Depending on the implementation, this can be a process, a set of processes,
a thread. Communication between Entities is realized via GPs.

Furthermore, an Entity keeps state information that is shared among multiple GPs
and runs processes or threads that manage this state. Examples for such state infor-
mation are routing tables, resolution tables, and access control tables.

4.2.2 Generic Path

A Generic Path (GP) is an abstraction of data transfer between communicating Entities
located in the same or in remote nodes. The actual data transfer, including forwarding
and manipulation of data, is executed by EPs.
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4.2.3 Endpoint

An Endpoint (EP) keeps the local state information of a specific GP instance, i.e, it is
a thread or process executing a data transfer protocol machine and doing any kind of
traffic transformation. EPs are created by an Entity and may access shared information
of that Entity.

Usually, GPs require other GPs to provide their service. E.g., a TCP/IP GP
requires another GP that provides unreliable unicast, like an Ethernet GP, to provide
a reliable unicast service at the end. Therefore, EPs are bound via Hooks to other EPs
within the same node. Besides exchanging data, Hooks also hide names from other
CTs to permit changing a GP’s realization later on.

4.2.4 Compartment

A Compartment (CT) is a set of Entities that fulfill the following requirements:

• Each entity carries a name from a CT-specific name space (e.g., MAC addresses
in the Ethernet CT). These names can be “empty” and do not need to be unique.
Rules how names are assigned to entities are specific to each CT.

• All entities in a CT can communicate, i.e., they support a minimum set of com-
munication primitives/protocols for information exchange. These protocols are
implemented as different GP types. Hence, for joining a CT, an Entity must be
able to instantiate the EP types required by the CT.

• All entities in a CT may communicate, i.e., there are no physical boundaries or
control rules that prohibit their communication.

A special CT is the Node CT (N1 and N2 in Figure 5). It corresponds to a process-
ing system, i.e., typically an operating system that permits communication between
different processes (e.g., by using Unix domain sockets). By means of virtualization,
multiple Node CTs can be created on one physical node.

An Entity is typically member of at least two CTs, the “vertical” Node CT and a
“horizontal” CT. Furthermore, the Entity has a (possibly empty) set of names from
each of the respective CT name spaces.

Note that GPs cannot cross CT boundaries due to the possibly different name
spaces, protocols, etc. GPs always reside within a single CT.

4.2.5 Core

The Core is a special Entity. It exists once per Node CT, is only member of the
Node CT, and is responsible for node-wide management. The Core mainly supports
other Entities in cross-CT (i.e., cross-layer) issues, like, name resolution, mobility,
managing/controlling Hooks, and service discovery. E.g., in the example in Figure 5,
when setting up the GP between EP1 and EP2, it is the Core that tells E1 that E3 is
able to provide the service required to realize its GP.
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Note that the Core is also able to reconfigure the realization of existing, i.e., already
established, GPs during runtime. This is done transparently to the involved Entities
by moving a Hook from one EP to another, possibly in another CT. This feature is
required, e.g., to realize mobility or to switch between different transmission modes,
like cooperative and direct transmission.

4.3 GP establishment

This section describes the steps to actually set up a GP. The description is based on
the scenario introduced in Figure 5.

Assume, the GP EP3 ↔ EP4 in C2 is already established. Now, E1 wants to
establish a GP to E2 within C1. The following steps are necessary:

1. E1 asks the Core in N1 that it intends to open a GP to E2 and that it requires
the service “unreliable unicast” for this.

2. The Core (N1) knows from an earlier registration process that E3 in C2 is able
to provide the requested service. Hence, the Core performs a name resolution for
E2 in C2. For now, the name resolution is just a black box. Details will be given
in Section 5.

3. The name resolution succeeds and shows that E2 in C1 can be reached via E4
in C2. The Core stores this result in a resolution table and notifies E1. Note
that the result of the resolution is not unveiled to E1 to permit to transparently
change the GP realization later on.

4. E1 instantiates EP1 and requests a Hook according to the previous name resolu-
tion from the Core (N1). The Core creates a Hook between EP1/EP3.

5. EP1 sends an OpenGP packet via the Hook. This packet contains its final desti-
nation E2 in C1 and first arrives at E3 where it is sent via the GP EP3 ↔ EP4.
When it arrives at E4, E4 tells the Core (N2) that an OpenGP packet has been
received for E3 in C1.

6. The Core (N2) notifies E2 about the OpenGP packet. E2 in turn instantiates
EP2. Thereafter, the Core (N2) creates a new Hook between EP2 and EP4 such
that the OpenGP packet can be sent via the Hook to E2.

7. Finally, EP2 acknowledges the OpenGP packet to EP1.

The same mechanisms can also be used for setting up GPs in more complex sce-
narios, spanning more than two Node CTs and multiple horizontal CTs.
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4.4 Testbed implementation

To be able to use Entity, EP, and Core implementations in various environments, like
Linux, Windows, and embedded systems, we used C++ for efficiency and strictly sep-
arated the implementation of the logic parts from the environment-specific parts. In
detail, this separation means that our testbed abstracts execution environment func-
tions, e.g., by mapping Hooks to available IPC mechanisms. Entities, EPs, and Cores
just use these abstractions, which enables to use their content (transport protocols,
routing strategies, mobility schemes, data encoding, etc.) in different environments
without changing the code.

We realized this separation by inheritance, provided by the object-oriented pro-
gramming paradigm. For this, we implemented all abstractions, like Hook, time-
out, and callback handling, in a root class, called AbstractEntity (and analogously
for EPs and Cores). From this root class, wrapper classes like PosixEntity and
OmnetEntity inherit to map the abstractions to the appropriate execution environ-
ment APIs. Thereafter, an Entity class is derived from one of these wrappers (chosen
during compile time). Own, environment-independent Entity classes inherit from this
class. Environment-specific entities directly inherit from a wrapper class. Figure 6
illustrates this.

AbstractEntity OmnetEntity

PosixEntity

EntityXOR

OmnetLANEntity

PosixLANEntity

TCPIPEntity

Figure 6: Inheritance graph for Entity implementations. Entity is usually the base
class from which user-specific Entities (gray) are derived.

Currently, we have ready-to-use wrappers for POSIX-compliant systems, like Linux,
BSD, and Darwin (Mac OS X) and for OMNeT++ [15], an open-source discrete event
simulator. The wrapper for OMNeT++ is especially useful during the development
phase and for demonstrating scalability while at the same time using the implemen-
tation in real-world scenarios via the POSIX wrapper. Additionally, we are currently
working on wrappers for Windows and OpenFlow [16].

4.5 Related work

For prototyping data transport schemes, there are several existing approaches to mod-
ify today’s network stack, like the Click Modular Router [17], BSD Netgraph [18],
OpenFlow [16], and XORP [19]. XORP is intended for implementing new routing pro-
tocols and focuses only on IP routing and route calculation. It is based on the Click
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Modular Router. Click is a software framework for Linux to construct arbitrary packet
processors. However, as we needed a full architecture that provides core services, like
full reconfigurability during runtime, name resolution, and path setup among multiple
nodes, Click’s features were not sufficient.

A very similar approach to Click is BSD Netgraph. Netgraph supplements the
network stack with nodes that process packets. The disadvantages are similar to those
of Click, plus that Netgraph is only available on FreeBSD.

A different approach is OpenFlow. OpenFlow is an interface to modify flow tables
(i.e., packet forwarding behavior) of infrastructure nodes, like switches, routers, access
points, and Linux nodes. As OpenFlow is basically “just” an interface definition, it
cannot provide the required means for our purposes. However, we intend to extend
our framework implementation to support OpenFlow to provide powerful processing
capabilities on carrier-grade infrastructure nodes.

5 Name resolution framework

Resolving “names” into “addresses” is used in everyday networking at various layers
and abstraction levels. It is realized by a patchwork of individual techniques and
concepts. In current networking practice, there is no clear consensus on what a “name”
or an “address” really is and how they should be mapped to each other between different
layers of a system. Closely linked to this confusion is a lack of a clear concept how
the entities inside the individual layers in a system refer to each other and what is
necessary to identify the mapping between such two entities; only patchwork solutions
for typical combinations of layers (e.g., ARP, DNS) exist. These issues make it difficult
to introduce a new protocol or a new layer, as this likely to break existing name
resolution schemes.

We propose a flexible yet unified name resolution framework that has two advan-
tages: (1) With a very small set of primitives, a vast range of resolution mechanisms,
like ARP or DNS, can be captured. (2) Introducing new layers is much easier. We will
discuss information-centric networking as an example.

In the following, we use the framework component definitions introduced in Sec-
tion 4.2 to describe our name resolution framework.

5.1 Resolution process

When resolving a name, an Entity knows the name of its desired peer Entity and the
CT to which itself and this name belongs. The objective of name resolution is to find
the following additional information for such a name:

• The name of a CT via which the peer Entity can be reached (e.g., “WLAN”).

• An Entity inside this “lower CT”, which can handle the communication on behalf
of the originator Entity (typically, by means of sharing a Node CT).

c© 2010 University of Paderborn.

All rights reserved.
TR-RI-10-311 Page 12



5 NAME RESOLUTION FRAMEWORK

• The name of a remote Entity in the lower CT that can pass on data to the actual
peer Entity (typically, by means of sharing a Node CT).

The core point in designing a unified name resolution system is to avoid spreading
knowledge of how to interpret a name outside of its CT. Neither does the upper CT
understand names of the lower CT nor vice versa. Hence, the only thing an Entity can
do to resolve a name (in absence of further knowledge) is to contact all other Entities
in its own CT and ask which Entity has this name (optimizations will come later) – a
WhoHas message is sent inside its own CT.

Horizontal CTs usually do not have direct communication means, i.e., spreading
a WhoHas message requires assistance of suitable lower CTs (which CTs are suitable
depends on the required communication service). A lower CT Entity, however, needs
to be told where to send this message; it needs a remote address, which has to be
provided by the higher CT Entity that initiates the resolution. Note that this lower
CT remote address is, from the perspective of the higher CT Entity, a configuration
parameter (opaque string) which it needs to provide but not to understand. Hence,
the resolving Entity sends its WhoHas message to all local Entities in all suitable CTs,
with the remote address (in the lower CT) being looked up, e.g., from a configuration
file. This address could be a unicast, broadcast, or even anycast address inside the
lower CT.

In the lower CT, the WhoHas message is distributed to its remote address, possibly
to many Entities in this CT. The receiving lower-level Entity will receive the WhoHas
message and will distribute this message to all entities in the original CT. It does not
have to process names of the original CT.

Inside the original CT, Entities understand names contained in the WhoHas mes-
sage. Each Entity checks whether it matches the desired name (it does not have to
be the named Entity, cp. ARP). If no, it can silently discard the message. If yes, it
answers with an IHave message, containing (1) the original CT name, (2) the name to
be resolved in the original CT, (3) the lower CT name, and (4) the lower CT address
over which the name in the original CT can be reached.

5.2 Examples

The following examples show that two very different name resolution schemes can easily
be cast into this framework.

5.2.1 ARP

For the ARP example, we use the scenario in Figure 7. There are three Node CTs, two
LAN CTs, and one IP CT. We want to resolve IP name 5.6.7.8 from the IP Entity
with name 1.2.3.4, which needs to learn that it can reach 5.6.7.8 via the local LAN
Entity 45:67:89 in CT LAN A by sending to 89:AB:CD.

According to our framework, name resolution proceeds as follows:
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Figure 7: Name resolution in an ARP scenario. Paths of WhoHas messages are illus-
trated with dashed, black arrows; IHave messages with gray, dotted arrows.

1. Entity 1.2.3.4 checks (e.g., from configuration file, Core) via which CTs in can
resolve IP names and finds two LAN CTs. It prepares two WhoHas packets,
including: (1) IP as CT name, (2) IP originator 1.2.3.4, (3) IP destination 5.6.7.8,
and (4) remote destination Entity address (e.g., from configuration file, Core),
which would typically specify 00:00:00 for LAN broadcast.

2. LAN Entities distribute the packets to the destination (broadcast) address.

3. Receiving LAN Entities distribute the packet to all attached IP entities.

4. Receiving IP Entities compare the destination IP name against their own (or
those names for which they know a route). IP Entity 5.6.7.8 knows that it has this
name and sends back an IHave packet. It has essentially the same information as
the WhoHas packet (with lower CT broadcast address replaced by LAN 45:67:89
as destination and LAN 89:AB:CD as sender).

5. The originator IP Entity 1.2.3.4 receives the IHave packet and can enter the con-
tained information (lower CT addresses) to its resolution table (without having
to understand semantics of these addresses).

5.2.2 Peer-to-peer-based resolution

Now, the resolution process is more complex, e.g., using peer-to-peer techniques. A typ-
ical application example for this could be an information-centric network as described
in Section 2.

Assume a browser would like to resolve a name in the HTTP CT to which it
belongs. For this, it sends a WhoHas message to a resolver. The resolver, instead of
simply looking up the name in a list, would communicate inside a Distributed Hash
Table (DHT) to find the destination address (in the desired underlying IP CT). For
this to work out correctly, the resolver is member of two CTs: the HTTP CT as well
as a DHT CT for the actual name resolution.
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Figure 8 illustrates such a setup. Note that the WhoHas message in the HTTP CT
is not simply relayed as a WhoHas message in the DHT CT; it turns into an in-CT,
query-like message (a WhoHas message in the DHT CT may exist as well but serves
another purpose, namely to find the IP address for a member of the DHT only known
by its name in the DHT CT).

Figure 8: Name resolution in a P2P scenario.

5.3 Testbed implementation

We implemented the name resolution framework directly in conjunction with the data
transport framework (Section 4.4). In consequence, the transport testbed is able to
deal with any naming scheme and any name resolution implementation.

Our name resolution framework implementation spans the Core and Entities. When
an Entity wants to resolve a name, it creates a WhoHas message, containing the follow-
ing information: (1) its own name, (2) the name to be resolved, and (3) the CT name
to which these two names belong. Thereafter, this message is passed to the Core, along
with a descriptor that specifies which service will be required for data transfer later
on (after a successful name resolution). The Core uses this descriptor to determine for
which of the available (horizontal) CTs a resolution is performed. For each of these
suitable CTs, the Core checks if an entry exists in the ResolvConf. An example is il-
lustrated in Table 1; it contains two entries for configuring name resolution within the
CTs TCP IP and NetInf. Resolving a TCP IP name in the LAN B CT also takes place in
the LAN B CT; resolving from NetInf to NetInfTransport is done in the NetInfRes

CT.
The Core extends the WhoHas message with the information from the ResolvConf

and sends it to all Entities in the own Node CT that are member of the CT defined
by ResolverCT. These Entities send the WhoHas message to the resolver Entity (Re-
solverName) where it is processed and answered.

When the resulting IHave message arrives back at the originating Entity that sent
the WhoHas in the CT defined by ResolverCT, it is passed to the Core. The Core adds
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Table 1: Example ResolvConf. SrcCT is the CT from which a name is resolved, DstCT
the CT to which the resulting address belongs, ResolverCT the CT in which resolution
takes place, and Resolver the name of the resolver Entity.

SrcCT DstCT ResolverCT Resolver

TCP IP LAN A LAN A 00:00:00:00:00:00

TCP IP LAN B LAN B 00:00:00:00:00:00

NetInf NetInfTransport NetInfRes 12345

the contained information to its ResolutionTable. An example is shown in Table 2.
It holds two results; one for 5.6.7.8 in the TCP IP CT that succeeded in the LAN B CT
and one resolution that was answered in LAN A.

Table 2: Example ResolutionTable. SrcEntity is the Entity that starts the resolution,
DstEntity the name to be resolved (both within CT). LowerSrcEntity/LowerDstEntity
are the Entity names in LowerCT that were found during resolution.

CT SrcEntity DstEntity LowerCT LowerSrcEntity LowerDstEntity

TCP IP 1.2.3.4 5.6.7.8 LAN B 45:67:89 89:AB:CD

TCP IP 1.2.3.4 2.3.4.5 LAN A 45:67:AB 23:45:67

The Core now informs the Entity that requested the resolution (1.2.3.4 in the
example) about the success and returns a reference to the ResolutionTable entry.
The Entity cannot read the ResolutionTable content. It uses the pointer to reference
the name resolution result when sending data to the resolved destination name. This
strictly keeps names in their own CTs and makes common misuse impossible (e.g., to
put “lower addresses” like IP into the payload).

5.4 Related work

To our knowledge, this is the first approach towards a unified name resolution frame-
work that captures a wide range of existing and future resolution services and spans
over all technological levels, i.e., network layers.

6 Conclusion

We presented four frameworks for prototyping future Internet techniques related to
data transport, information-centric networking, naming, and name resolution. These
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frameworks can be used on their own to prototype individual concepts or can be com-
bined to complex testbed implementations, like we did it for the integrated NetInf
prototype.

Experience during our work confirmed that the frameworks simplify prototyping
a lot. Due to their generality, they will also be useful for other projects as they
reduce redundant implementation of basic testbed functions and provide ready-to-use
building blocks to rapidly complement new, small components with an overall network
architecture. We will publish our code as open-source project.
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