
Self-Adaptive UIs: Integrated Model-Driven
Development of UIs and their Adaptations

Enes Yigitbas, Hagen Stahl, Stefan Sauer and Gregor Engels

Paderborn University, s-lab - Software Quality Lab,
Zukunftsmeile 1, 33102 Paderborn, Germany

{enes.yigitbas,hagen.stahl,sauer,engels}@upb.de

Abstract. Self-adaptive UIs have been promoted as a solution for con-
text variability due to their ability to automatically adapt to the context-
of-use at runtime. In classical model-driven UI development (MDUID)
approaches, self-adaptivity and context management introduce additional
complexity since self-adaptation features are distributed in a cross-cutting
manner at various locations in the models. This results in a tightly inter-
woven model landscape that is hard to understand and maintain. In this
paper, we present an integrated model-driven development method where
a classical model-driven development of UIs is coupled with a separate
model-driven development of UI adaptation rules and context-of-use. We
base our approach on the core UI modeling language IFML, and focus
on a new modeling language for adaptation rules, called AdaptUI. We
show how generated UI code is coupled with adaptation services gen-
erated from AdaptUI adaptation rules and integrated in an overall UI
framework. This allows runtime UI adaptation realized by an automatic
reaction to context-of-use changes. The benefit of our approach is demon-
strated by a case study, showing the development of self-adaptive UIs
for a university library application, utilizing the Angular 2 JavaScript
framework.

Keywords: Model-Driven UI Development, UI Adaptation Rules, Self-
Adaptive UIs, Context-Awareness

1 Introduction

The user interface (UI) is a key component of any interactive software application
and is crucial for the acceptance of the application as a whole. However, a UI is
not independent from its context-of-use, which is defined in terms of the user,
platform and environment [1]. As today’s user interfaces of interactive systems
become increasingly complex since many heterogeneous contexts of use have
to be supported, it is no longer sufficient to provide a single ”one-size-fits-all”
user interface. Building multiple UIs for the same functionality due to context
variability is also difficult since context changes can lead to the combinatorial
explosion of the number of possible adaptations and there is a high cost incurred
by manually developing multiple versions of the UI [2].



2 Enes Yigitbas, Hagen Stahl, Stefan Sauer and Gregor Engels

In the past, model-driven user interface development (MDUID) approaches
were proposed to support the efficient development of UIs. Widely studied ap-
proaches are UsiXML [3], MARIA [4], and IFML [5] that support the abstract
modeling of user interfaces and their transformation to final user interfaces. How-
ever, in classical MDUID approaches, the modeling of self-adaptivity and context
management aspects introduce additional complexity since self-adaptation fea-
tures are distributed in a cross-cutting manner at various locations in the models.
This results in a tightly interwoven model landscape that is hard to understand
and maintain. Therefore, an integrated model-driven development method is
needed where a classical model-driven development of UIs is coupled with a
separate model-driven development of UI adaptation rules and context-of-use.
In detail, the following challenges have to be addressed to integrate adapta-
tion aspects into MDUID and support the development of self-adaptive UIs in a
systematic way:

– C1: Specification of UI Adaptation Rules: A language conform to the core UI
modeling language IFML, standardized by the Object Management Group
(OMG), is required for specifying UI adaptation rules in an abstract manner.
With the help of this language, UI designers should be able to separately
specify various UI adaptation rules which can adapt the UI at runtime (sep-
aration of concerns, abstraction level, extensibility, maintainability).

– C2: Generation of UI Adaptation Logic: Based on the specified abstract UI
adaptation rules, the adaptation logic needs to be generated for supporting
UI adaptation capabilities at runtime.

– C3: Execution of UI Adaptation at Runtime: For supporting runtime UI
adaptation enabling automatic reaction to dynamic context-of-use changes,
the generated adaptation logic needs to be coupled with generated UI code
as well as integrated in an overall UI framework.

To address the above described challenges, the contributions of this paper
include our vision on enhancing UIs with self-adaptation capabilities in a sys-
tematic and model-driven way. Therefore, our contribution covers the following
aspects: Firstly, a domain specific language, called AdaptUI, will be presented
which supports the specification of abstract UI adaptation rules that cover var-
ious adaptation dimensions (e.g. layout, navigation, or task-feature set). Addi-
tionally, our approach supports the generation of UI adaptation logic by trans-
forming the abstract UI adaptation rules into an executable representation of
the target UI framework. Finally, a rule-based execution engine is integrated in
our UI framework for executing the UI adaptations at runtime.

The remaining sections of this paper are organized as follows: Section 2
presents the conceptual solution of our work. In Section 3, we present the mod-
eling and integration of UI adaptation concerns in MDUID. Section 4 deals with
the implementation of our approach. Section 5 shows the benefit and usefulness
of our approach based on a case-study from the domain of university library man-
agement. Related work is presented in Section 6 and finally Section 7 concludes
the paper and gives an outlook on future work.



Integrated Model-Driven Development of UIs and their Adaptations 3

2 Conceptual Solution

Model-driven User Interface Development (MDUID) is a promising candidate for
mastering the complex development task of self-adaptive UIs in a systematic,
precise and appropriately formal way. Our model-driven solution architecture
for self-adaptive UIs is depicted in Figure 1 and consists of three development
paths.

Domain Model
(UML Class 
Diagram)

Abstract UI 
Model
(IFML)

UI Adaptation 
Rules

(AdaptUI)

references

UI 
Generator

Adaptation 
Service 

Generator

Final UI
(Angular 2 

Views)

Adaptation 
Service

(TypeScript)

Input Input

generates

reference

adapts monitors

Context
Model

Context
Sensor

reference

Context
Sensor 

Generator

generates generate

ContextUser Interface Adaptation

Input

Fig. 1. Model-driven Architecture for Self-adaptive UIs

The first development path (left side of Figure 1) addresses the model-driven
development of UIs. This development path makes use of an Abstract UI Model
and a Domain Model which are then transformed by a code generator (UI
Generator) into a Final UI. This development path has been subject of ex-
tensive research [6] and we already presented the realization and application of
an MDUID approach for different target platforms ([7], [8]) (including smart-
phone, desktop and self-service systems) based on the OMG standard IFML.
The first development path supports efficient development of heterogeneous UIs
for different target platforms. However, this development path on its own is not
enough to support UI self-adaptation capabilities. Therefore, we extended our
existing MDUID solution architecture with parallel development paths which
support model-driven development of UI adaptation rules and context-of-use.
This way, the model-driven UI development path is complemented by an analog
development path which is responsible for the UI adaptation concerns. As the UI
adaptation path is also based on the paradigm of model-driven development, the
solution preserves various advantages of model-driven software development like
Separation of Concerns, Extensibility or Maintainability. In general, the main
idea of the model-driven adaptation path (in the middle of Figure 1) is to support
the specification of abstract UI Adaptation Rules in alignment to the standard-
ized abstract UI modeling language IFML. The specified UI Adaptation Rules
serve as an input for the Adaptation Service Generator which transforms them



4 Enes Yigitbas, Hagen Stahl, Stefan Sauer and Gregor Engels

into an Adaptation Service. The Adaptation Service is responsible for adapting
the generated Final UI at runtime. The third development path (right side of
Figure 1) is responsible for characterizing the dynamically changing context-of-
use parameters. A Context Model that is referenced by the UI Adaptation Rules,
supports the abstract specification of heterogeneous context-of-use situations.
Based on the Context Model, the Context Sensor Generator allows the genera-
tion of various Context Sensors like accelerometer, GPS, brightness or noise level.
The Context Sensors provide context information data that are monitored by
the generated Adaptation Service to decide on how to adapt the UI at runtime.

In this paper, we are especially focusing on the adaptation path and its in-
tegration in the MDUID approach. For illustrating the interplay between the
generated final user interface, the Angular2 Views, and the Adaptation Service
as well as to present the effect of specified UI adaptation rules on the final user
interface, we elaborate on the adaptation approach. Figure 2 shows a detailed
overview of the UI adaptation approach containing the main layers and com-
ponents for realizing self-adaptive UIs that are able to automatically react to
changes in their context-of-use.

UI Adaptation 
Rules

(AdaptUI)

UI Adaptation 
Rule Transformer

(XML)

Adaptation 
Service 

Generator

Adaptation Service

Angular 2 
Views

monitored by edit

Display 
Properties

Knowledge

Context 
Sensor

Monitor Execute

Evaluate 
Conditions

references

adapt instance

adapt schema

Context Manager Self-adaptive UI

Fig. 2. Model-driven Specification and Adaptation of UIs



Integrated Model-Driven Development of UIs and their Adaptations 5

The first layer starts with the specification of UI Adaptation Rules at de-
sign time. The specification language is AdaptUI, a domain-specific language
developed in this work which is explained in more detail in the next section. In
the second layer, the abstract adaptation rules are transformed into an XML
format by the UI Adaptation Rule Transformer. The goal of this transformation
is to store the adaptation rules in a universal, common file format, that is easily
traversable for further transformation processes. The next step in the genera-
tion process, is the transformation to an executable Adaptation Service. This
transformation is done by the Adaptation Service Generator. The output of the
generator is the Adaptation Service which characterizes a runtime component in
the third layer. The Adaptation Service implements an adaptation loop similar
to IBM’s MAPE-K loop [11]. Main runtime components besides the Adapta-
tion Service are the Context Manager and the Self-adaptive UI. The Context
Manager provides the generated context information through Context Sensors
which are specified in the Context Model. The Self-adaptive UI consists of two
subcomponents: The Angular 2 Views which are responsible for representing the
UI and Display Properties which are affected by the adaptation rules and con-
tain the adaptable schema and type information of the UI. Context information
which are generated by Context Sensors are monitored by the Adaptation Ser-
vice. Unlike the MAPE-K loop with its analysis and plan phases, the Adaptation
Service relies on the application of predefined (by the abstract UI Adaptation
Rules) conditions and associated actions. Therefore, no planning of actions is
necessary. The two phases in the MAPE-K loop are replaced by the Evaluate
Conditions component. Rules that satisfy the conditions are executed. The rules
can modify the UI directly or edit the Display Properties. General approach here
is that the UI is directly modified, if the change only affects the current view
(adaptation of the current instance). If it is, for example, a property change
that would affect several pages, it is set in the Display Properties (adaptation of
schemas). An example for a property could be the layout of tables in the whole
UI. The properties are referenced from within the views and thereby can adapt
the layout and design. The Knowledge component of the MAPE-K loop is not
focus of this paper, but logged context information data and stored adaptation
states and preferences could be used to infer upcoming UI adaptations.

3 Modeling and Integration of Adaptation Concerns

In this section, we describe our integrated modeling approach for representing
UI adaptation rules. Therefore, we present our UI adaptation language AdaptUI
and show its coupling to the core UI modeling language IFML and to context
modeling.

Specifying sound UI adaptation rules is a challenging task which should be
supported by a dedicated domain specific language. Based on OMG’s core UI
modeling language IFML, we developed a new modeling language for UI adapta-
tion rules, the language AdaptUI. AdaptUI allows domain experts, for example
web designers, to model adaptation concerns by specifying the conditions and



6 Enes Yigitbas, Hagen Stahl, Stefan Sauer and Gregor Engels

User Interface

booksView

<<List>> bookList

<<DataBinding>> 
bookBinding

bookDetailsView

<<Details>> 
bookDetails

<<DataBinding>> 
bookBinding

Abstract UI Model
(IFML)

Domain Model
(UML Class
Diagram)

Book

title:String
author:String

isbn:String

Adaptation
UI Adaptation Rules (AdaptUI)

Context
Context Model (UML Class Diagram)

references

re
fe

re
n

ce
s

references

references

showDetails

references

e:Environment

brighntessLevel: int

CoU:ContextModel

p:Platform

type = PlatformType

u:User

name= String
age= int
language= String
visionAid= boolean 
role= String

environment

platform

user

Fig. 3. Specification of AdaptUI adaptation rules

actions for UI adaptations. To support various adaptation techniques for devis-
ing self-adaptive model-driven UIs, AdaptUI enables specification of different UI
adaptation rules. The following main categories of UI adaptation types are sup-
ported by AdaptUI: task-feature-set, navigation, and layout adaptation. Task-
feature-set adaptation supports UI adaptation by flexibly showing and hiding
UI interaction elements like tables, buttons, text-fields etc. Navigation adapta-
tion means that the navigation flow of the UI can be flexibly adapted based
on the contextual parameters by adding, deleting or redirecting links between
user interface flows. Finally, layout adaptation deals with adaptation rules that
support layout optimization like changing font size, colors or splitting screens to
divide a complex UI view into multiple views so that for example small screen
sizes are satisfied. Figure 3 shows a modeling example of UI adaptation rules
based on our language AdaptUI. On the left side of this figure, small excerpts
of the core UI models are depicted. There is an abstract UI model based on
IFML which shows the representation of two UI view containers booksView and
bookDetailsView which are connected by a navigation edge showDetails. To en-
able the specification of data bindings in IFML, the corresponding classes from
the domain model are referenced, in our case the class Book. To support the
separate specification of UI adaptation rules in addition to the IFML model
in a comfortable way, AdaptUI allows to specify and bind different adaptation
rules to the IFML modeling elements. In the center of Figure 3, an example
specification of an AdaptUI navigation adaptation rule is shown, which is called
”‘Navigate to BookDetails”’. This AdaptUI rule defines that the specific view
bookDetailsView can be only reached, if a specific user context is satisfied. For
defining this rule, AdaptUI rules are referencing a context model where relevant
contextual parameters are described. In the case of our example, the user role
student has to be satisfied so that the bookDetailsView can be reached. In a
similar way, various other UI adaptation rules like adapt brightness or set ta-
ble layout (see Figure 3) can be specified to react to potential context-of-use
changes.



Integrated Model-Driven Development of UIs and their Adaptations 7

An overview of the general structure of the AdaptUI language is shown in
Figure 4. The root element of all elements in AdaptUI is the AdaptUI-Model. It
contains the definition of a Flow (chosen to be conform to the terminology of used
rule engine Nools1) containing arbitrary number of AdaptationRule elements.
An AdaptationRule consists of the RuleName, FactDefinition, a PriorityLevel,
Conditions and Actions. The FactDefinition is given as the class name in the
final Angular 2 application and an identifier by which it is referred to within the
rule. To decide in which order rules are executed if more than one satisfies all
conditions, the PriorityLevel is used as indicator for priority. Higher level means
that the rule is executed before rules with lower level.

1

AdaptUI-Model

Services Service Functions Function

Flow

AdaptationRule

RuleName

PriorityLevel

FactDefinition

ConditionalOR

ConditionalAND

ConditionalPrimary

Fact Operator Value

Action

TaskChangeOperation

AddViewComponent
Operation

DeleteViewComponent
Operation

ServiceOperation

ServiceFunctionCall
Operation

EditFactOperation

SetDisplayProperty
Operation

LayoutChange
Operation

AdaptCSSClass
Operation

NavigationChange
Operation

AddNavLink
Operation

DeleteNavLink
Operation

RedirectNavLink
Operation

ClearNav
Operation

1

0..1
1..* 1

1..*

1

1..*

1

1

1

1..* Conditions

right0..1

right0..1

left

left

1

1

1 0..1 0..1

Fig. 4. Structure of AdaptUI-DSL

Conditional expressions can be used to check if the fact satisfies certain condi-
tions. The condition can be a combination of boolean expressions concatenated
by OR-operators and AND-operators. For this, AdaptUI provides several ele-
ments to build such an expression. The ConditionalOR elements are connected
by OR-operators. The left side of such a ConditionalOR expression is a Con-
ditionalAND expression. The right side of a ConditionalOR expression can be
empty or be another ConditionalOR expression. The elements in a Conditiona-
lAND expression are concatenated by an AND-Operator. The left side of Con-
ditionalAND is the ConditionalPrimary, which is a boolean expression made up

1 https://github.com/C2FO/nools



8 Enes Yigitbas, Hagen Stahl, Stefan Sauer and Gregor Engels

of just a fact or a combination of fact, operator and value. The right side of a
ConditionalAND can be either another ConditionalAND or be empty.

The Actions, which were introduced in the beginning of this paragraph, are
executed if the conditions are satisfied. The supported Actions of the AdaptUI
language are based on the action categories defined in our previous work [8] and
cover the adaptation operations TaskChangeOperation, NavigationChangeOpera-
tion and LayoutChangeOperation. A fourth type proposed in our prior previous
work is a ComposedAction which combines multiple actions of the first three
categories. In AdaptUI, the ComposedAction type is implicitly modelled by the
composition relation between AdaptationRule and Action.

Beside a Flow an AdaptUI-Model can also contain Services in the target lan-
guage of the UI. This means, the services referenced here are existing Angular 2
services that are used within the web application. The definition of these services
enables the user of the language to use them later on in the rule specification. A
Service is defined by its name and relative location to the Services folder of the
Angular 2 implementation. A Service can contain interfaces to Functions which
also have a Function with its name attribute. Both, Functions and Services are
referred to by their respective ID. To allow editing facts or call Angular 2 ser-
vices through an AdaptationRule, an additional category, ServiceOperation, is
included in the Actions.

4 Implementation

We implemented an IFML2NG2 generator to support the utilization of our
modeling and development approach for devising self-adaptive UIs. The realized
generator automatically creates Angular 2 views, based on the IFML model and
domain model, and the adaptation service, based on the AdaptUI rule speci-
fication. In the following, we focus on and briefly describe the implementation
of AdaptUI, the Adaptation Service Generator and the Runtime Components to
support UI adaptation at runtime (see Figure 2).

4.1 AdaptUI

For specifying abstract UI adaptation rules, the described UI adaptation lan-
guage AdaptUI is used. Foundation of AdaptUI is the open-source framework
Xtext2 for development of programming languages and domain-specific lan-
guages. The defined language also comes with support of an infrastructure inte-
grated in the Eclipse IDE. Features include syntax highlighting and code com-
pletion as useful tools for the user of AdaptUI.

4.2 Adaptation Service Generator

The goal of the Adaptation Service Generator is the automated creation of an
Angular 2 service that allows the adaptation of the UI at runtime. The adapta-
tions to the UI are expressed in a rule-based form in an XML format. Based on

2 http://www.eclipse.org/Xtext



Integrated Model-Driven Development of UIs and their Adaptations 9

this input file, the Adaptation Service Generator generates an Angular 2 service
containing the JavaScript rules engine Nools. Nools is an efficient RETE-based
rule engine written in JavaScript and provides an API for specifying fact and
rules. The Adaptation Service Generator is implemented with Xtend3 and re-
ceives the UI adaptation rules in an XML format as input. Structurally, it con-
sists of the components NoolsServiceGenerator, NoolsRuleGenerator, NoolsCon-
ditionGenerator and NoolsActionGenerator (see Figure 5). These components
are responsible for creating an injectable Angular 2 service for monitoring the
context model and executing adaptation operations.

<<component>>
NoolsServiceGenerator

<<component>>
NoolsRuleGenerator

<<component>>
NoolsConditionGenerator

<<component>>
NoolsActionGenerator

Rules

Conditions Actions

Fig. 5. Structure of the Adaptation Service Generator

The base structure of the Angular 2 service, generated by the NoolsService-
Generator, consists of the required Angular 2 imports, the class declaration of
the service and the implementation of the Nools flow. The flow is composed of
all the rules defined in the abstract UI adaptation rules. For each rule it is de-
fined under which conditions the rule actions are executed. The generation of
the individual rules is delegated to the NoolsRuleGenerator. For each adapta-
tion rule the name is the name of the abstract UI adaptation rule. The salience
of the rule is the priority level of the rule and corresponds to the level defined
in the AdaptUI rule specification. In addition to that, the rule fact is defined
by the factType and factName attributes. The generation of the conditions and
adaptation operations of the rule is delegated to the NoolsConditionGenerator
and the NoolsActionGenerator respectively.

The NoolsConditionGenerator is responsible for creating the rule conditions.
All child elements of the conditions element are combined with the OR-operator.
If there is a conditionGroup element, all child elements of the conditionGroup
are combined with the AND-operator. The result is a string of concatenated
conditions with operators. Likewise, to generate the actions that the rule should
execute when the conditions are satisfied, the NoolsActionGenerator is called
with the actions element as parameter and, additionally, the mapping of services
and functions defined in the abstract UI adaptation rule specification. However,

3 http://www.eclipse.org/xtend



10 Enes Yigitbas, Hagen Stahl, Stefan Sauer and Gregor Engels

there is a defined set of actions. If the action element is unknown, there is no code
created. This means, that if there are new possible actions added to the schema
definition, they also need to be implemented in the NoolsActionGenerator.

4.3 Runtime Components: Adaptation Service, Self-adaptive UI
and Context Manager

At runtime, we have the components Adaptation Service, Self-adaptive UI and
Context Manager. The Self-adaptive UI is generated by our IFML2NG2 gener-
ator. Its Angular 2 views consist of an HTML template, which is used to render
the UI in the browser, and an Angular 2 component, which is implemented in
TypeScript and manages the view. Likewise, the Adaptation Service is generated
as Angular 2 service and is also implemented in TypeScript. As described in the
earlier section, the Adaptation Service uses Nools, a JavaScript based rule en-
gine, for monitoring the context information provided by the Context Manager.
In our current implementation, the Context Manager and the Display Properties
(see Figure 2) are implemented manually and independently from the generation
pipeline in TypeScript. However, to ensure the integration of the adaptation loop,
they are referenced within the AdaptUI specification. The facts of the AdaptUI
rule specification reference the different context-of-use information stored in the
context model of the Context Manager. Furthermore, it is possible to define UI
adaptation operations that should change the schema used by the view elements
of the UI.

At runtime, the Adaptation Service monitors the context information and
executes the adaptation rules whose conditions are satisfied. To adapt the UI
view elements on instance level, JQuery is used to directly manipulate the DOM
tree of the view. Changes only affect the current UI view element and do not
persist on other UI views. When changing the schema for a group of view ele-
ments in the Display Properties, the adaptation affects the properties of all view
elements of this type. This also includes instances of this view element type on
subsequently visited views. This is done by binding the layout class of the view
elements of this type, represented by CSS classes, to the properties stored within
the Display Properties.

5 Case study

The case study setting is based on an example scenario which is derived from the
university library management domain (see Figure 6). The scenario setting is a
library web application for universities which is called ”LibSoft”. LibSoft pro-
vides core library management functionality like searching, reserving and lend-
ing books. LibSoft’s UI can be accessed by heterogeneous users and user roles
(like student or staff member) through a broad range of networked interaction
devices (e.g. smartphones, tablets, terminals etc.) which are used in various envi-
ronmental contexts (e.g. brightness, loudness, while moving etc.). Depending on
the situation, users are able to access their library services where, when and how



Integrated Model-Driven Development of UIs and their Adaptations 11

it suits them best. For example, if the user wants to pursue a self-determined
cross-channel book lending process, she can begin an interaction using one chan-
nel (search and reserve a book with her laptop at home), modify the transaction
on her way using a mobile channel, and finalize the book lending process at the
university library via self-check-out terminal or at the staff desk. In the example
scenario described above, each channel has its own special context-of-use and
eventually the contextual parameters regarding user, platform and environment
can dynamically change. Figure 7 shows such a context-of-use (CoU) change from
CoU2 to CoU4 (compare Figure 6). The depicted context-of-use object model
excerpts in Figure 7 illustrate how different contextual parameters regarding
user, platform and environment can change. Therefore, it is important to con-
tinuously monitor the context-of-use parameters and react to possible changes
by automatically adapting the UI for the new context-of-use situation.

Search
Book

Reserve
Book

Edit Book
Reservation

Lend
Book

Issue
Book

XOR XOR

Context-of-use 1 Context-of-use 2

Context-of-use 3

Context-of-use 4

[User, Platform, Environment]

Fig. 6. Example scenario: UIs in dynamically changing context-of-use situations.

CoU2:ContextModel

u:User

e:Environment

p:Platform

user

platform

environment

name = "Jane Doe"
age = 26
language = "en"
visionAid = false
computerSelfEfficacy = true

admin = false
role = "student"

brightnessLevel = 30

type = "mobile"

CoU4:ContextModel

u:User

e:Environment

p:Platform

user

platform

environment

name = "John Roe"
age = 50
language = "de"
visionAid = false
computerSelfEfficacy =false

admin = true
role = "staff"

brightnessLevel = 100

type = "desktop"

Context-of-Use
Change

Fig. 7. Context-of-use object model excerpts

Already a small set of contextual parameters can highly influence the UI since
lots of context situations can occur if the context-of-use parameters dynamically
change. Based on the different context dimensions, various adaptations to the UI



12 Enes Yigitbas, Hagen Stahl, Stefan Sauer and Gregor Engels

can be specified and integrated in the web application. The integration happens,
as explained within the earlier sections, by specifying the adaptation rules with
the help of AdaptUI and using the specification as input for the generator. For
utilizing our approach in the case study setting, an IFML model, representing
the views and navigational flows of the UI, a domain model and a set of UI
adaptation rules were created as described in Section 3. The specified models
were transformed into final user interfaces using our IFML2NG2 generator.

Screenshots of the resulting self-adaptive UI are depicted in Figure 8. Ac-
cording to the monitored context information for CoU2, the layout for the UI
is optimized for a mobile device used in a darker environment, because the user
Jane is editing her book reservation while travelling to the library and it is al-
ready quite dark outside (see left side of Figure 8). Also, the UI is adapted to
the user properties by enabling access to the functions and navigation available
to students. The UI language is set to English as it is preferred by the user
Jane. Since Jane is recognized as a self-efficacious user with the application, she
gets extended functionalities, like a more complex search and filter mechanism
for the list view of the books. When the context changes from CoU2 to CoU4,
the generated self-adaptive UI adapts itself automatically to the new contextual
parameters. In this case, the staff members view on a desktop device with a
wider and brighter layout is shown, displaying the list of reserved books, be-
cause in CoU4 a staff member, John Roe, uses his desktop computer to issue the
book to Jane. Additionally, to the functionalities and functions available to staff
members, John is provided with a link to the administration interface, because
he is granted access to the administration interface. The UI Language is set to
German and the search and filter mechanisms of the list are simplified, because
he just started using LibSoft and is, therefore, not yet self-efficacious. Since the
location is a well-lit library, the brightness of the environment is high.

Change of
Context-of-use

UI for CoU2: UI for CoU4:

Fig. 8. UI adaptation according to different contexts-of-use



Integrated Model-Driven Development of UIs and their Adaptations 13

The case study demonstrates the benefit of our approach for supporting
the development of self-adaptive UIs and showcases our solution approach for
addressing the introduced challenges C1-C3. Through the separate specification
of abstract AdaptUI rules the modeling of adaptation concerns is supported
in a comfortable way. The case study also shows how generated UI code is
coupled with adaptation services generated from AdaptUI adaptation rules and
integrated in an overall UI framework. As shown in the example scenario, this
allows runtime UI adaptation realized by an automatic reaction to context-of-use
changes.

6 Related Work

Recent research provides various approaches that support the model-based and
model-driven development of UIs and their adaptations.

Model-based and model-driven development methods have been discussed in
the past for various individual aspects of a software system and for different
application domains. This applies to the development of the data management
layer, the application layer or the user interface layer. The CAMELEON Ref-
erence Framework (CRF) [1] provides a unified framework for model-based and
model-driven development of UIs. UIs are represented in CRF on the following
levels of abstraction: Tasks and Domain Models, Abstract User Interface (AUI)
Model, Concrete User Interface (CUI) Model and Final User Interface (FUI).
UsiXML [3], MARIA [4] and IFML [5] are widely studied approaches for model-
driven UI development which were applied in various domains. However, these
approaches do not explicitly cover the specification and integration of UI adapta-
tion aspects in the development process by providing a UI adaptation language
that enables the generation of adaptation services for supporting runtime UI
adaptation.

In recent research, adaptive or self-adaptive UIs have been promoted as a
solution for context variability due to their ability to automatically adapt to the
context-of-use at runtime [2]. A key goal behind self-adaptive UIs is plasticity
denoting a UI’s ability to preserve its usability despite dynamically changing
context-of-use parameters [9]. In practice, especially in the context of web de-
sign, the paradigm of Responsive Web Design (RWB) is widely used to adapt
the layout of a web page in response to the characteristics of the used device.
While RWB adaptation rules are mainly focusing on the contextual parameter
Platform, considering device characteristics like screen size or resolution, our
approach also focuses on the contextual parameters User and Environment al-
lowing the specification of advanced adaptation rules and automatic adaptation
to complex context-of-use situations.

In [10] the authors present a hierarchy of adaptability properties for software
systems, referred to as self-* properties. Based on this work, the authors present
in [2] how some of these properties are applicable to the domain of self-adaptive
UIs. Similar to the idea that self-* properties of self-adaptive software systems
can be applied to self-adaptive UIs, it is possible that general reference architec-



14 Enes Yigitbas, Hagen Stahl, Stefan Sauer and Gregor Engels

tures for self-adaptive systems can be also applied to self-adaptive UIs. We will
give a brief overview of these architectures. The MAPE-K loop, which was used
in our approach, was created by IBM as a reference model for autonomic comput-
ing [11]. MAPE-K considers software systems as a set of managed resources that
is adapted by an adaptation manager which consists of the components Monitor,
Analyze, Plan, Execute, and Knowledge. Similar reference architectures for self-
adaptive systems are Rainbow [12] and the Three Layer Architecture [13]. Beside
these general architectures for self-adaptive systems, there are also specific ref-
erence architectures for adaptive UIs like CAMELEON-RT [14], CEDAR [15]
or FAME [16]. Furthermore, different approaches like Supple [18], MASP [19],
MyUI [20] or RBUIS [21] present methods, techniques and tools for supporting
the development of adaptive UIs. However, these approaches do not focus on the
generation of UI adaptation logic in the means of adaptation services.

On the intersection of MDUID and UI adaptation, several transformation-
based approaches like [22] or [23] were proposed that make use of adaptation
rules based on a context model to adapt UIs. There are also other approaches
using different techniques to adapt UIs, like [24] which uses machine learning
or [17] where a genetic algorithm is used to calculate a well suited UI adapta-
tion. Compared to these approaches, our model-driven approach for developing
self-adaptive UIs, provides a dedicated rule-based UI adaptation language and
supports the generation of adaptation services allowing runtime UI adaptation.

7 Conclusion and Outlook

In this paper, we present an integrated model-driven development approach for
self-adaptive UIs where a classical model-driven development of UIs is enhanced
and coupled with a separate model-driven development of UI adaptation rules
and context-of-use. Based on OMG’s core UI modeling language IFML, we pro-
pose a new modeling language for UI adaptation rules, the language AdaptUI.
We present how generated UI code is coupled with adaptation services generated
from AdaptUI adaptation rules and integrated in an overall UI framework. This
allows runtime UI adaptation realized by an automatic reaction to dynamically
changing context-of-use parameters like user profile, platform, and usage envi-
ronment. We demonstrate the benefit of our approach by a case study, showing
the development of self-adaptive UIs for a university library application, utilizing
the Angular 2 framework.

In ongoing research, we investigate the acceptance and user-friendliness of
self-adaptive UIs by conducting usability studies with potential end-users. In ad-
dition to that, we analyze how additional context information properties can be
automatically monitored and generated by context sensors to be used for further
UI adaptation. Further research will also cover the application of quality assur-
ance techniques to our presented model-driven UI adaptation approach, which
enable the provisioning of hard guarantees concerning self-adaptivity character-
istics such as adaptation rule set stability and deadlock freedom. Furthermore,
we plan to enhance our proposed UI self-adaptation loop through the imple-



Integrated Model-Driven Development of UIs and their Adaptations 15

mentation of a knowledge component. In this context, it is conceivable to apply
learning algorithms based on the user’s assessment of executed adaptation op-
erations to further improve UI adaptations.

Acknowledgement

This work is based on ”KoMoS”, a project of the ”it’s OWL” Leading-Edge
Cluster, partially funded by the German Federal Ministry of Education and
Research (BMBF).

References

1. G. Calvary, J. Coutaz, D. Thevenin, Q. Limbourg, L. Bouillon, and J. Vanderdonckt.
2003. A Unifying Reference Framework for Multi-Target User Interfaces. Interacting
with Computers, 15, 289-308.

2. P. A. Akiki, A. K. Bandara, and Y. Yu, Adaptive Model-Driven User Interface
Development Systems. 2014. ACM Comput. Surv., vol. 47, no. 1, pp. 64:1-64:33.

3. Q. Limbourg and J. Vanderdonckt. 2004. USIXML: A User Interface Description
Language Supporting Multiple Levels of Independence. In Engineering Advanced
Web Applications: Proceedings of Workshops in connection with the 4th Interna-
tional Conference on Web Engineering. Rinton Press, 325-338.

4. F. Paternò and C. Santoro, and L. D. Spano. 2009. MARIA: A Universal, Declar-
ative, Multiple Abstraction-Level Language for Service-Oriented Applications in
Ubiquitous Environments. ACM Transactions on Computer-Human Interaction
16(4),19:1-19:30.

5. M. Brambilla, and P. Fraternali. 2014. Interaction Flow Modeling Language - Model-
Driven UI Engineering of Web and Mobile Apps with IFML. The MK/OMG Press.

6. F. Paternò and C. Santoro. 2012. A logical framework for multi-device user inter-
faces. In Proceedings of the 4th ACM SIGCHI symposium on Engineering interactive
computing systems (EICS ’12). ACM, New York, NY, USA, 45-50.

7. E. Yigitbas, T. Kern, P. Urban, and S. Sauer. 2016. Multi-Device UI Development
for Task-Continuous Cross-Channel Web Applications. In Proceedings of the 1st
International Workshop on Liquid Multi-Device Software for the Web at ICWE’16.
Springer, LNCS, vol. 9881, pp. 114-127.

8. E. Yigitbas and S. Sauer. 2016. Engineering Context-Adaptive UIs for Task-
Continuous Cross-Channel Applications. In Human-Centered and Error-Resilient
Systems Development. Springer, LNCS, vol. 9856, pp. 281-300.

9. J. Coutaz. 2010. User Interface Plasticity: Model Driven Engineering to the Limit!
In Proceedings of the 2nd ACM SIGCHI Symposium on Engineering Interactive
Computing Systems. ACM, 1-8.

10. M. Salehie and L. Tahvildari. 2009. Self-Adaptive Software: Landscape and Re-
search Challenges. ACM Transactions on Autonomous and Adaptive Systems, 4,
1-42.

11. IBM. 2006. An Architectural Blueprint for Autonomic Computing.
12. D. Garlan, S.-W. Cheng, A.-C. Huang, B. Schmerl, and P. Steenkiste. 2004. Rain-

bow: Architecture-Based Self-Adaptation with Reusable Infrastructure. Computer
37(10), 46-54.



16 Enes Yigitbas, Hagen Stahl, Stefan Sauer and Gregor Engels

13. J. Kramer and J. Magee. 2007. Self-Managed Systems: An Architectural Challenge.
In Proceedings of the Workshop on the Future of Software Engineering. International
Conference on Software Engineering. IEEE, 259-268.

14. L. Balme, R. Demeure, N. Barralon, J. Coutaz, G. Calvary, and U. J. Fourier. 2004.
Cameleon-RT: A Software Architecture Reference Model for Distributed, Migrat-
able, and Plastic User Interfaces. In Proceedings of the 2nd European Symposium
on Ambient Intelligence. Springer, 291-302.

15. P. A. Akiki, A. K. Bandara, and Y. Yu. 2012. Using Interpreted Runtime Models
for Devising Adaptive User Interfaces of Enterprise Applications. In Proceedings of
the 14th International Conference on Enterprise Information Systems. SciTePress,
72-77.

16. C. Duarte and L. Carric. 2006. A Conceptual Framework for Developing Adaptive
Multimodal Applications. In Proceedings of the 11th International Conference on
Intelligent User Interfaces. ACM, 132-139.

17. A. Blouin, B. Morin, O. Beaudoux, G. Nain, P. Albers, and J.-M. Jzquel. 2011.
Combining aspect-oriented modeling with property-based reasoning to improve user
interface adaptation. In Proceedings of the 3rd ACM SIGCHI symposium on Engi-
neering interactive computing systems (EICS ’11). ACM, 85-94.

18. K. Z. Gajos, D. S. Weld, and J. O. Wobbrock. 2010. Automatically Generating
Personalized User Interfaces with Supple. Artificial Intelligence 174(12-13), 910-950.

19. S. Feuerstack, M. Blumendorf, and S. Albayrak. 2006. Bridging the Gap between
Model and Design of User Interfaces. In R. L. Christian Hochberger, Lecture Notes
in Informatics, 131-137.

20. M. Peissner, D. Haebe, D. Janssen, and T. Sellner. 2012. MyUI: Generating Ac-
cessible User Interfaces from Multimodal Design Patterns. In Proceedings of the
4th ACM SIGCHI Symposium on Engineering Interactive Computing Systems
(EICS’12). ACM, 81-90.

21. P. A. Akiki, A. K. Bandara, and Y. Yu. 2016. Engineering Adaptive Model-Driven
User Interfaces. IEEE Trans. Softw. Eng. 42, 12 (December 2016), 1118-1147.

22. V. López-Jaquero, F. Montero, and P. González. 2011. T:XML: A Tool Supporting
User Interface Model Transformation. In Model-Driven Development of Advanced
User Interfaces, 241-256.

23. J.-S. Sottet, V. Ganneau, G. Calvary, J. Coutaz, A. Demeure, J.-M. Favre, and R.
Demumieux. 2007. Model-driven adaptation for plastic user interfaces. In Proceed-
ings of the 11th IFIP TC 13 international conference on Human-computer interac-
tion (INTERACT’07). Springer-Verlag, Berlin, Heidelberg, 397-410.

24. A. Hariri, D. Tabary, S. Lepreux, and C. Kolski. 2008. Context aware busi-
ness adaptation toward user interface adaptation. In Communications of SIWN.
Springer-Verlag, 46-52.


