Linking Services to Websites
by Leveraging Semantic Data

D. Wolters, S. Heindorf, J. Kirchhoff, and G. Engels

This is a preprint.

Copyright IEEE. Personal use of this material is permitted. However, permission to reprint/republish
this material for advertising or promotional purposes or for creating new collective works for resale or
redistribution to servers or lists, or to reuse any copyrighted component of this work in other works,
must be obtained from the IEEE.

Preliminary Citation:

D. Wolters, S. Heindorf, J. Kirchhoff, and G. Engels: Linking Services to Websites by Leveraging
Semantic Data. In Proceedings of the 24th International Conference on Web Services (ICWS). IEEE,
(2017) (to appear).

Linking Services to Websites by
Leveraging Semantic Data

Stefan Heindorf
Paderborn University

Dennis Wolters
Paderborn University

Jonas Kirchhoff
Paderborn University

Gregor Engels
Paderborn University

dennis.wolters @uni-paderborn.de heindorf @uni-paderborn.de jonaskir@mail.uni-paderborn.de engels @uni-paderborn.de

Abstract—Websites increasingly embed semantic data for
search engine optimization. The most common ontology for
semantic data, schema.org, is supported by all major search
engines and describes over 500 data types, including calendar
events, recipes, products, and TV shows. As of today, users
wishing to pass this data to their favorite applications, e.g.,
their calendars, cookbooks, price comparison applications or
even smart devices such as TV receivers, rely on cumbersome
and error-prone workarounds such as reentering the data or
a series of copy and paste operations. In this paper, we present
Semantic Data Mediator (SDM), an approach that allows the easy
transfer of semantic data to a multitude of services, ranging from
web services to applications installed on different devices. SDM
extracts semantic data from the currently displayed web page on
the client-side, offers suitable services to the user, and by the press
of a button, forwards this data to the desired service while doing
all the necessary data conversion and service interface adaptation
in between. To realize this, we built a reusable repository of
service descriptions, data converters, and service adapters, which
can be extended by the crowd. Our approach for linking services
to websites relies solely on semantic data and does not require any
additional support by either website or service developers. We
have fully implemented our approach and present a real-world
case study demonstrating its feasibility and usefulness.

Index Terms—Services; Websites; Semantic Data; schema.org;
Data Conversion; Interface Adaptation; Mediation

I. INTRODUCTION

As of today, a lot of websites do not only display data to
end users, but also embed semantic data understandable by
machines. The main motivation for providing semantic data
is search engine optimization (SEO), since the presence of
semantic data improves a website’s search ranking and allows
search engines to display parts of this data prominently within
search results. At the time of writing, over 1 billion web pages,
i.e., more than 38% of pages on the web, offer semantic data [1].
The de-facto standard to describe this data is schema.org, which
is supported by all major search engines and defines over 500
data types, including events, recipes, products, and TV shows.

The data provided by websites is not only relevant for search
engines, but also for a lot of services provided by user-oriented
applications. For example, users would like to insert events
into their calendars, add recipes to their electronic cookbooks,

or send information about their favorite TV shows to their TVs.

Unfortunately, most websites only provide links to a small set of
services, like social media sites, while the majority of services
are neglected. Users are left alone to transfer the data manually,
which is a cumbersome and error-prone task. Merely, adding
an event to a calendar application requires copying at least start

date, end date, and event name as well as optionally further
fields like event description, repetitions, location, attendees,
or attachments. Automating this task might be relatively easy
for a single example, however, the conversion from hundreds
of semantic data types to thousands of heterogeneous data
formats of different services is a major challenge. An additional
challenge arises if the target application runs on another device.
This is for example the case if the calendar is managed solely
on the user’s smartphone or if a TV receiver needs to be
programmed to record a TV event listed on a website.

In this paper, we present Semantic Data Mediator (SDM),
an approach that empowers end users to link a wide range
of services to websites. SDM consists of four major steps:
(1) Extracting semantic data from the currently open web page
with a browser extension, (2) offering suitable services on
this data to the user (3) converting the data to appropriate
data formats, and (4) forwarding the data to a wide range of
services, including web services as well as those provided by
locally-installed applications and smart devices. For doing so,
we introduce an approach for automatic converter composition
taking both semantic data types and syntactic data formats
into account. Moreover, we employ service adapters to invoke
services not offering a web-accessible interface. For finding
suitable services, our approach uses a personalized service
registry containing only those services relevant for a specific
user. To enable reuse, the personalized service registry in turn
is derived from a large, central service repository, which can
be extended by the crowd.

Our approach does not require any additional effort by
either website or service developers. Website developers simply
continue adding semantic data to their websites for SEO
and application developers develop apps in the usual manner.
Thereupon, our approach flexibly combines data conversion
and service adapters to support a wide range of services
and websites. As we show in our case study, this enables
unprecedented use cases for the data provided by websites.

The remainder of this paper is organized as follows: Sec-
tion II reviews related work. Section III gives an overview of
our approach. Subsequently, Section IV provides a detailed
description of how we link services to websites. Section V
extends our approach to also work in combination with
locally-installed applications. Section VI gives details of our
implementation and Section VII demonstrates the feasibility
and usefulness of our approach in a case study. Section VIII
concludes the paper and gives an outlook on future work.

II. RELATED WORK

While it is common practice to link, compose and integrate
services [2, 3, 4, 5] with each other as well as to do the same
with semantic data [6, 7, 8], there is no comprehensive approach
allowing end users to bridge the gap between the world of
services and the world of data. As we will show in this section,
all existing approaches are either very restricted (Browser
Extensions, Share Buttons), tackle only the provisioning of
an interface, but do not handle service integration (Adapter
Services), or aim at creating new composite applications
(End-User Service Compositions).

Browser Extensions: There exist a few browser plugins
which link services to websites. However, almost all are
specific to single services, for example, offering a “Skype’
button or “Send to Kindle” button. Perhaps the two most
similar approaches to ours are Semantic Spider [9] and Piggy
Bank [10]. They provide browser plugins to parse semantic
data on websites and offer simple operations on the data, e.g.,
viewing them or storing them in a local database. However, in
contrast to our approach, they do not allow to link a wide range
of services to the data. For example, their approach works for
web-based calendars, but is not extensible for a TV receiver,
smart refrigerator, or an Android cookbook application.

Share Buttons & Co: Most major web applications like
Twitter, Facebook, or Google provide APIs such that their
services can be integrated by website developers. For integrating
multiple of these services at once, intermediary services like
sharethis.com or addthis.com emerged. However, those services
seldom go beyond sharing simple content and they are restricted
to a few popular services. Also, a major drawback is that
website visitors depend on website developers embedding them.

Adapter Services: Han and Tokuda [11] tackle the problem
of many web applications not offering machine-accessible
APIs by proposing an adapter service: Their approach extracts
HTML elements such as lists, tables or images from websites
and offers them as a service. The service requester has to give
detailed instructions how to find the element in the page, e.g.,
by giving the name or ID of the HTML element. Hence, their
approach remains on a syntactic level. In contrast, our approach
operates on a semantic level, e.g., we are able to recognize
that a table represents a recipe and that it can be forwarded to
a cookbook application. Besides this adapter service for web
applications, there are approaches offering data which is stored
on Android devices as a service [12, 13]. Those approaches,
however, need to be explicitly integrated by website developers,
and they are somewhat complementary to our approach as we
are transferring data in the opposite direction.

Semantic Services: Approaches for semantic service de-
scription and composition [14, 3, 15, 2, 4, 16, 17] operate on
semantic data. However, they do not bridge the gap between
the world of services and the world of data. They enrich
existing services by semantic annotations, detailing the services’
operations and parameters on a high conceptual level with
concepts from ontologies. In contrast to our approach, they
rely on existing service endpoints and cannot directly operate

>

on data. Furthermore, while there is a standard for semantic data
on websites (schema.org), as of today, there is no standardized
ontology for semantic service descriptions necessitating for
error-prone conversion between heterogeneous ontologies [18].

End-User Service Composition: Various approaches enable
end users to create service compositions [19]. The goal of such
compositions is often a mashup, a composite application based
on services provided by other applications [20], e.g., mashups
of web applications [21, 22] or user interface integration using
ontologies [23]. We do not strive to create new composite
applications, but to link existing services to existing websites
to enable a large variety of new use cases for the provided
data. Wu et al. [24] present an approach for the fast retrieval
of compositions. In contrast to our approach, their approach
neither takes data mediation into account nor does it distinguish
between data types and formats.

III. OVERVIEW OF SERVICE-TO-WEBSITE LINKING

In this section, we give an overview of Semantic Data
Mediator (SDM), our approach to link services to websites. We
introduce our design goals, the solution idea, and an example
scenario illustrating the usage of SDM.

A. Design Goals

Our approach shall be usable independent of the support
by both website and service developers, because it cannot be
assumed that website developers integrate all services that users
are potentially interested in. For example, website developers
might not even be aware of a service’s existence or the service
integration effort might be prohibitively expensive. Hence, we
do not require website developers to integrate our approach,
but instead rely on the presence of semantic data due to
SEO. Similarly, we cannot expect all service providers to
offer browser extensions or other means enabling the usage of
their services in combination with any website.

Furthermore, our approach shall support a multitude of
websites and services: Users interact daily with numerous
websites, offering news, events, recipes, etc., as well as with
all kinds of services offered by web applications, or applications
installed on their smartphones, tablets and desktop computers.
Moreover, different users expect different services on the same
data, for example, users use different web applications or have
different applications installed on their devices. It shall be
possible to conveniently transfer data from websites to all
those services provided by applications, independent of the
device on which they are provided. Therefore, we need to
support data conversion, since the same semantic data, might
be represented in various different data formats by services.

B. Solution Idea

Figure 1 gives an overview of our approach. Instead of
requiring website developers to link services to websites, we
utilize the embedded semantic data originally intended for
search engines. This enables end users to independently create
novel and unforeseen use cases for the data provided by these
websites going far beyond mainstream ‘share’ buttons.

Semantic Data

Website Search
Engines

Semantic Data
Mediator (SDM)

Web Services Locally-installed Applications

OGyDeo3a am & 2
AvEcOBy . L Yo

and many more

Figure 1. Linking services to websites: We extract standardized semantic data
from websites and offer this data to a multitude of services, including a user’s
web services and application-based services on local devices.

We rely on semantic data for mainly two reasons: (1) By the
end of 2016, over 38% of websites already offered semantic
data [1]. This is an increase of 27% compared to 2015 and we
expect this number to increase even further, since providing se-
mantic data as part of SEO is important for a website’s success.
Moreover, (2) techniques embedding and describing semantic
data are standardized (see Subsection IV-A). Consequently, by
using embedded semantic data, we neither need to depend
on proprietary and heterogeneous APIs provided by website
developers to gain their data, nor to depend on error-prone
scraping techniques to infer the data semantics from HTML.

To support a multitude of services, we cannot simply focus
on web services. To also enable the linking of services provided
by applications installed locally or on other devices, we employ
various different service adapters. By utilizing a central repos-
itory consisting of service and converter descriptions, users
derive personal service registries containing only those services
they are interested in, i.e., those provided by applications they
are using. Based on the selected services, converters to translate
data according to the needs of the respective services are
added to the registry as well. Thereby, we are not limited to
the few services able to consume semantic data directly. To
enable the usage of locally-installed applications, users can
install a variety of service adapters. We already developed a
large number service adapters, e.g., for Android and Windows
applications, as well as data converters, but for our approach to
scale to millions of services, we plan on harnessing the power
of the crowd. For this, we have simplified adapter and converter
development and allow the extension of our repository by end
user developers.

C. Example Scenario

For describing our approach, we consider the following
simple scenario: Alice is sitting in front of her desktop computer
and finds a soup recipe on the web. Now she wants to add
this recipe to the cookbook app on her smartphone, which
she uses to manage all her favorite recipes. Unfortunately, the
website cannot provide a simple button for this case, since the
cookbook app resides on a different device. Also, the cookbook
app only allows to import recipes described in a proprietary
XML format, which is not offered by the website. Without our

approach, Alice would need to manually enter this recipe into
her cookbook app, which is cumbersome because she needs to
add all instructions and ingredients. Copying associated images
is even more complicated, since they have to be downloaded,
moved to the smartphone and added to the recipe, perhaps
even in a specific order.

In contrast, Figure 2 shows our approach. It consists of a
personal service registry, knowing about services relevant for
Alice, e.g., the import service of her cookbook app. When Alice
visits the recipe website, our approach detects the semantic data
describing the recipe and offers additional services, including
the one to import the recipe into her cookbook app installed
on her smartphone. When she selects this service, the recipe
is converted into the suitable proprietary XML format with
references to associated images. The converted recipe is then
passed to the import service of her cookbook app. Most of this
happens in the background, while Alice only needs to select
the service from the list of services provided by our approach.

Of course, this is just one of many possible usage scenarios
for our approach (for more see Section VII). Alternatively,
Alice could also send this recipe to one of her friends by using
a messenger on her smartphone or share it on basically any
social network, including those for which the recipe website
does not offer any share buttons.

A technical explanation of our approach is given in the
upcoming sections by explaining the different steps shown
in Figure 2: Section IV focuses on the service registry, data
conversion and linking services to websites, whereas, Section V
describes service adapters and invocation.

IV. LINKING SERVICES TO WEBSITES

In this section, we describe how our approach links services
to websites. For our description, we follow the example scenario
in Figure 2 and focus on the first six steps, while the last two
steps are discussed in Section V.

A. Semantic Data Formats and Ontologies

When Alice visits the recipe website in Step 1 of Figure 2,
she only sees a human-readable version of the recipe. If the
site is optimized for search engines, like most commercial
websites, it also contains machine-understandable semantic data
describing the shown recipe. This semantic data is invisible
for website users, and as mentioned in Section I, is mainly
used by search engines to semantically answer search requests
or to display the data more prominently within search results.
There are four common techniques to embed semantic data
into websites. They can be distinguished according to whether
or not they utilize an external ontology, and how they are
embedded in a web page.

JSON for Linked Data (JSON-LD) is a lightweight extension
of the popular JSON format and enables the description of
semantic data. JSON-LD objects can be stored in an invisible
part of a web page, e.g., in a script tag. The data is typed
over an external ontology. In practice, the by far most common
ontology is schema.org. Listing 1 shows an example for a
recipe from the page in Figure 2. The @context property

Semantic Data Mediator (SDM)

Browser
Background - extension Personal . Sarien
http:/... Service o I Central Service, p
Renisty =" Converter, and adapter
/ egstry _ —— Adapter Repository ;
2.is derived o) HTTP
! ata conversion
extracted| 3 ‘jgentify from Interface
Semantic suitable services 2 D> D > \
Data i
N 6. start data 7‘52\\//?!235
contains: conversion
! 8. starts app with
Foreground I 4. offer services to user \ / converte?:lpdata
|

http://... http://...

@ Lovisits| . | W | T

~rA A

~r A

5. selects

~rA A~

/\

Figure 2. Example usage of our approach to add a recipe from a desktop browser with a cookbook app on a smartphone: (1) A user visits a website containing
semantic data. (2) Our browser extension extracts the semantic data and (3) queries the personal service registry for suitable services. (4) The browser extension
offers the services to the user who (5) selects the desired service. (6) Then the semantic data is converted as needed by the selected service before (7) a service
adapter on the smartphone is invoked that (8) forwards the data to a cookbook app on the user’s smartphone.

Listing 1. Example of a JSON-LD object describing a simple soup recipe by
utilizing the type Recipe from the schema.org ontology

I {

2 "Qcontext": "schema.org",

3 "@type": "Recipe",

4 "name": "Simple Soup",

5 "ingredients": ["Water", "Instant Soup"]
6 1}

defines the ontology, the @t ype property the type within this
ontology, and dependent on the type, there are further properties
such as name and ingredients in this recipe example.

Besides JSON-LD, further techniques to provide semantic
data in websites include RDFa, Microdata and Microformats.
The former two utilize external ontologies like schema.org,
too, but in contrast to embedding JSON-LD, special HTML
attributes are used to annotate the existing (visible) HTML
elements in a web page. While adding those fine-grained
annotations involves more effort for website developers, for data
consumers, it becomes easier to match semantic annotations to
visible content. Similarly, Microformats are also an annotation
technique, but they do not utilize an external ontology. Instead
about 20 different Microformats have been defined to describe
data types like events, contact data, or recipes. By the end
of 2016, Microdata was the dominating technique to provide
semantic data in websites [1]. Nevertheless, we support the
extraction of all these formats.

B. Extracting Semantic Data

We developed a browser extension to extract all semantic
data items from the currently opened web page (see Step 2).
The result of the extraction is a list of JSON-LD objects,
even if RDFa, Microdata or microformats have been used to
provide semantic data. By unifying the data format, we simplify

further processing. In case of Microformats, the context is
“microformats.org”. In case of RDFa, Microdata, or embedded
JSON-LD any ontology may provide the context, but most
websites use schema.org. There is already a significant number
of web pages providing semantic data, and we leave it for
future work to integrate information extraction techniques to
also extract semantic data from web pages, which do not
natively contain semantic annotations.

C. Personal Service Registry

A user’s personal service registry is the prerequisite to
identify suitable services for extracted semantic data. This
registry maintains descriptions of all services relevant for a user,
e.g., those provided by web or locally-installed applications
he/she uses. Yet, demanding that every service is directly
able to process JSON-LD objects typed over an ontology like
schema.org would greatly limit the number of services that can
be linked to a website. Therefore, the registry also maintains
descriptions of converter services capable of transforming data
so that it can be consumed by other services.

We support all web services having a RESTful HTTP
interface. Thus, our approach is applicable on most modern
web services, since they already provide such an interface and
we can apply interface adaptation to support services providing
other types of interfaces (see Subsection V). To add a RESTful
HTTP service to our registry, it is described using the OpenAPI
speciﬁcationm, which is tailored to describe RESTful HTTP
interfaces and has several benefits, e.g., editor tool support and
automated generation of documentation.

Listing 2 shows the description of a converter service which
is able to translate a schema.org Recipe provided in JSON-
LD to the MyCookbook XML format [25]. The latter is the

! formally known as Swagger specification 2 http:/swagger.io/specification

http://swagger.io/specification

Listing 2. OpenAPI description of a service able to convert schema.org
Recipes to HTML (simplified)

1 swagger: 2.0’

2 title: Recipe2MyCookbookXML

3 host: recipe2mycb.converter.example.com

4 schemes: http

5 paths:

6 J/convert:

7 post:

8 description: Converts Recipe to MyCookbookXML
9 consumes: application/ld+json

10 parameters:

11 — name: object

12 in: body

13 description: Recipe to be converted
14 required: true

15 schema:

16 $ref: ’schema-org. json#/Recipe’

17 produces: application/x.mycb+xml

18 responses:

19 200:

20 schema:

21 $ref: 'mycb-xml-schema. json#/cookbook’

official import/export format of the MyCookbook Android app®,
which we have used in our case study to realize the scenario
depicted in Figure 2. The first four lines of Listing 2 contain
general information about the service, like specification version
and title as well as the host’s address and supported schemes.
Starting from Line 5, provided endpoints and operations are
described. In this case, we have a single endpoint (/convert)
which only supports one operation (a POST request). Lines 9
to 16 describe how the converter service expects input data,
whereas Lines 17 to 21 describe how output data is provided.

We distinguish between two important aspects of input and
output data: data type and data format. The former describes
a certain type of data on a semantical level, like an event
or a recipe, whereas the latter describes how certain data
can be serialized, e.g., as JSON-LD objects. In a service
specification, the data format of the input and output of an
operation is specified by using media types (see Lines 9 and 17),
since this is the standard for HTTP-based interfaces. The
Internet Assigned Numbers Authority (IANA) maintains a
list of official media types (formerly known as MIME types).*
This list contains media types for most major data formats
like iCalendar, vCard, PDF and many more. The media type
for JSON-LD is application/1ld+json. The part before
the slash specifies the top level type, e.g., text, video, audio,
or application. The actual name of the media type follows
after the slash. Suffixes like + json and +xml indicate that
the format is a specialization of JSON or XML respectively.
Media types not officially listed by the IANA must carry the
prefix “x.” in their name. We use such unofficial media types
to distinguish between services that consume/produce any type
of XML or JSON, and those requiring a specialization of these
formats, e.g., we use application/x.mycb+xml to refer
to the MyCookbook XML format.

Data types are specified by either ontologies, like schema.org,
or in case of XML and JSON by schema definitions, e.g.,
cookbook is a type defined in the MyCookbook XML

3 http://mycookbook-android.com/ # http://iana.org/assignments/media-types

schema [25]. In contrast to ontologies, schemas are not
language-agnostic. For instance, schema.org is independent
of a concrete data format and can be used in combination
with multiple formats, like JSON-LD, RDFa, or Microdata.
A JSON or XML schema, however, is bound to JSON or
XML, respectively. To encode that the example converter
service expects a schema.org Recipe and not just any type of
JSON-LD object, we have translated the schema.org ontology
into a JSON schema, which can be referenced by an OpenAPI
specification (see Line 16). Similarly, Line 21 references the
type cookbook from the MyCookbook XML schema to define
that the result of the conversion is an XML-based cookbook.

D. Central Repository

We maintain a central repository to enable the easy addition
of further services to the personal service registry by allowing
users to reuse existing service descriptions, converter, and
adapter descriptions. Users can search this repository and add
relevant services from this central repository to their personal
service registry. When doing so, users may have to provide
additional parameters, e.g., credentials for services requiring
authentication. Furthermore, users can find existing converters
and do not need to develop those converters themselves. Service
and converter descriptions can be added to the central repository
by their respective service developer, or alternatively, by end
user developers who want to publish their own descriptions.

E. Finding Suitable Services

Based on the information maintained by the service registry,
we want to find suitable services for extracted data items
(Step 3). Unfortunately, most services do not directly operate on
semantic data, like a schema.org Recipe provided as a JSON-
LD object, but instead require the data to be converted first,
e.g., to the MyCookbook XML format. Our registry exploits
information about available converter services to compute
possible converter compositions, which enable the usage of
services that do not directly consume semantic data.

To find all services capable to process a given data item
either directly or indirectly via a sequence of conversions, the
service registry internally maintains a graph in which each data
type and data format is represented as a node (see Figure 3).
Every data type node is contained in a data format node, since
a serialization format is always needed. However, not every
data format is able to distinguish between different data types.
Those not supporting this differentiation do not contain any
data type nodes, e.g., plain text or PDF. Currently, we support
the type/format distinction for JSON-LD, because it allows to
reference external ontologies, and for JSON and XML, since
OpenAPI supports schema definitions for those formats. In
between these nodes, there are two types of edges: Inheritance
edges (—>) and converter edges (—). Inheritance edges specify
the type hierarchy both of data types and data formats. For data
types, information about the type hierarchy is available from
the respective ontology or schema associated with the service.
The inheritance between data formats is given implicitly by the
suffixes used in the respective media types (cf. Section IV-C).

http://mycookbook-android.com/
http://iana.org/assignments/media-types

Zero Conversions | One Conversion | Two Conversions

text/plain

Id-+json markdown
Ontology: schema.org
...Thing

x.bigoven+json

T x.mycb+xml | i [wi _Recipe :
R E— L “
{_Recipe ! »{ cookbook <
----------------------------- . ® x.mealmaster
:l Format {___ iType —J Inheritance —¥ Converter

Figure 3. Excerpt of the internal graph maintained by the service registry to
determine to which other data formats and types a data item can be converted

Converter edges indicate that there is a converter service able
to translate from one type to another. The edge labels specify
the corresponding converter service (for better readability those
labels are omitted from Figure 3). If there are multiple converter
services able to convert between the same types, we allow
multiple edges between two nodes. An example excerpt of
the graph maintained by the registry is depicted in Figure 3.
It shows the ontological inheritance for the schema.org type
Recipe, which is a subtype of CreativeWork which again
is a subtype of Thing. Also, implicitly we have JSON data,
since JSON-LD is specialization thereof. Hence, services able
to process any kind of JSON, like a JSON editor or beautifier,
could already process this data. In addition, we see that various
data conversions are possible, e.g., a recipe can be converted
first to Markdown and then into a PDF.

Based on a start node specified by an extracted data item, the
registry explores this graph and collects all service operations
capable of consuming any type and format reachable by travers-
ing at most k conversion edges. Figure 3 shows an example
of types and formats reachable by at most two conversions
when starting with data type schema.org/Recipe and data
format JSON-LD. Inheritance edges are not counted, since no
conversion is required. Varying k allows a tradeoff between
computational time and risk of conversion problems on the
one hand and flexibility on the other hand. To enable reuse of
converter services not accepting semantic data directly, k needs
to be greater than 1. During our case study we set k = 2.

Besides automatic converter compositions, we allow end
user developers to manually build converter compositions by
using a simple web application. Such manual compositions can
be saved as new converter services. The advantage of manually
created converter composition is that they can be adapted and
extensively tested before they are used. A manually composed
converter service counts as a single conversion step within
an automatically created converter composition. Hence, for
selected cases, more than k converters can be combined.

Finally, the registry returns all collected service operations
along with information about the corresponding services and all
relevant conversion options. The latter might include different
converter compositions leading to the same type and format.

b) http://...

a) http://...

~~~~~
OB

Figure 4. Linking services: (a) single browser-based menu for all data items,
(b) multiple injected menus, each specific to the corresponding data item

F. Linking Services to Websites

In the next step, the service operations returned by the
registry need to be linked to the website (see Step 4). For
convenience, we say that a service is linked to a website if at
least one of its operations is linked to this site. If only one data
item is described on the website, the services returned by the
registry are linked in a browser-based menu like in Figure 2.
In case of multiple data items, e.g., two recipes, we follow
two strategies: Either distinguish between the data items in the
browser-based menu (see Figure 4.a) or inject multiple item-
specific menus into the website, which are located directly next
to the corresponding data items (see Figure 4.b). The injected
menu is currently only supported when Microdata is used to
embed semantic data by annotating visible page elements. In
both cases, the services linked by our approach are grouped
into sharing services, converter services allowing to download
the data items in different formats, and other services which
do not belong to the first two categories.

G. Data Conversion

When the user selects one of the offered services (see
Step 5), the browser extension inspects which conversion
steps are needed to translate the data into the needed type
and format. If multiple conversion options exist, e.g., two
different converter services can be used or different converter
compositions exist that lead to the same type/format, we
apply a set of heuristics to choose the most appropriate one
automatically. A conversion option is preferred over another
one if (1) it works on a more specific type, e.g., Recipe is
more specific than CreativeWork or Thing, (2) it uses
less conversion steps, (3) it is marked as preferred, (4) it
was used more often by the user, (5) or it has a better user-
rating. Advanced end users can also select a conversion option
manually. During this manual selection, converter services can
be rated, marked as preferred/default, or permanently disabled.
Once a conversion strategy has been selected, automatically
or manually, the conversion is initiated (see Step 6). After the
data has been converted, it is passed to the selected service.

Due to the absence of services which are able to con-
sume semantic data directly, there is a high demand for
converter services for semantic data types, especially those from
schema.org. Thus, we provide a converter service template that
can be configured by providing a conversion function and meta
information like converter name, description, input and output
type. This enables developers to fully focus on coding the data
transformation, while the corresponding RESTful interface and
service registration procedures are automatically provided.



V. SERVICE ADAPTERS

As mentioned in Subsection IV-C, we expect that every
service has a RESTful HTTP interface. This basically enables
the usage of most modern web services. Unfortunately, nearly
all native applications neither offer an external nor an RESTful
HTTP interface. Instead, those services just provide an interface
to interact with the operating system or other applications on
the same device. To support those services as well and not be
limited to web services, we employ various forms of adapters:

Android: In [26, 27], we presented the XDAI-A approach
which can be used to provide external service interfaces for
Android apps. Thereby, the integration of services provided by
Android apps is enabled for apps running on different devices
as well. To create external service interfaces, XDAI-A provides
a domain-specific language and a ready-to-use interpreter. A
detailed discuss of XDAI-A is given in [26, 27]. As part of our
work on XDAI-A, we already developed adapters for operations
commonly provided by Android applications, e.g., sharing or
editing data over a RESTful HTTP interface. In combination
with the approach presented in this paper, we are now able
to use the services provided by Android apps and link them
to websites. Thereby, we enable the Steps 7 and 8 depicted
in Figure 2 and many more use cases involving Android apps
(see Section VII).

Windows: Our Windows service adapter extracts informa-
tion about installed applications from the Windows registry, i.e.,
their name and supported data formats. Using this information,
we can automatically provide services to open data items in the
respective data formats using these applications. An automated
registration procedure allows that users can easily add these
services to their personal registry.

Scheme-based Applicaton Invocation: Most modern oper-
ating systems, including Windows, Android, Linux, MacOS
and i0S, support associating applications with certain URI
schemes. For instance, the WhatsApp share button used on
mobile websites leverages the fact that the app is associated
with the scheme what sapp://. By creating a URI using such
a scheme, applications can be started with certain parameters,
e.g., in the case of WhatsApp, specifying the text to share. For
Windows and Android, we already implemented the support for
scheme-based application invocation, and analogously, Linux,
MacOS and iOS applications can be supported as well.

Command-Line Interface (CLI): A large number of ap-
plications for desktop operating systems provide a CLI. We
have developed a configurable adapter template that can be
used to provide an external RESTful HTTP interface for those
applications with just a few lines of code. In particular, this
can be very helpful to integrate command-line conversion
tools as converter services. For example, by utilizing this
adapter template, we provide an adapter for Pandoc, a universal
document converter supporting over 20 input and more than 40
output formats. Thereby, we have greatly extended the number
of possible data conversions and can support a larger number
of existing services.

5 http://pandoc.org/

VI. IMPLEMENTATION

We fully implemented our approach® in order to perform
a case study discussed in the next section. The browser
extension is available for Chrome, but we do not rely on
any features unique to Chrome. Thus, we are confident that
the extension can be ported to other browsers as well. The
converter service template, the CLI adapter, Windows adapter
and the personal service registry are developed using JavaScript
and the Node.js runtime. The registry uses a document-oriented
database (CouchDB) for managing service descriptions and a
graph database (Neo4j) to efficiently find conversion options
and relevant services. Implementation details of XDAI-A are
discussed in [27]. To enable easy deployment, the registry as
well as all converters based on our converter service template
can be deployed as Docker containers.

VII. CASE STUDY

We have performed a case study to verify whether we actually
achieved the design goals formulated in Subsection ITII-A. Our
first goal is to provide a solution that is independent of the
website and service developers’ support. Hence, we focused
on existing websites and services instead of developing our
own. Secondly, we want our approach to work for a multitude
of services, and therefore, we linked not only web services
to websites, but also services of native application running on
Windows and Android. Finally, to enable data conversion into
a wide range of different formats, we implemented converter
services for multiple schema.org types and reused existing
conversion tools by using our service adapters.

Over 4 million web pages list schema.org event data [1],
but not all of them offer to directly add these events to a
calendar application. We provide two simple converters that
allow us to pass this event data to Google Calendar and
calendar apps on Android devices. Due to our converter service
template introduced in Subsection IV-G, the development of
these converters only required a few lines of code. To use the
Google Calendar, we wrote a short OpenAPI specification, and
for Android calendars, we utilized our Android adapter (see
Section V). Thereby, we showed that we are able to support
existing web services as well as native applications and that
it is possible to invoke services of applications running on
another device than the one that is currently being used.

There are also over 4 million semantically annotated recipes
on the web [1] and we realized multiple use cases for these
recipes. We used our converter service template to create a
converter from schema.org Recipe to Markdown and reused
Pandoc utilizing our CLI adapter to enable the download
of recipes as Word, PDF, and text documents. By applying
our Windows adapter, we can also directly open them in the
associated applications. Thanks to XDAI-A, sharing the textual
representation is possible with any Android messenger app.
Listing 2 shows the specification of a converter from Recipe
to MyCookbook XML. In addition, we specified a service
adapter for the import service of the MyCookbook Android

6 http:/sdm.dwolt.de


http://pandoc.org/
http://sdm.dwolt.de

app by using XDAI-A. The data converter and service adapter
enable that any semantically annotated recipe embedded into a
website can directly be added to the MyCookbook app within a
single click (like in Figure 2). Similarly, other cookbook apps or
web applications could be supported, e.g., bigoven.com already
provides an OpenAPI specification of their HTTP interface.
We also linked services of other smart devices to websites by
using our approach. For this, we first focused on semantically
annotated video objects, e.g., imdb.com provides semantic
descriptions of movie trailers. Those videos can be played
on a smart TV by the press of a button. We realized this for
an Android-based smart TV by again utilizing our Android
adapter. Our approach is not limited to Android-based smart
devices. For instance, Enigma2-based set-top boxes like the
Dreambox or VU2 directly provide an HTTP interface to
remotely control the whole device. For these devices, we were
also able to support the same video playback functionality as
for the Android-based smart TVs. In addition, those devices
provide the service to record TV shows. Thereby, we enable
that a set-top is being programmed to record a show directly
from the website which describes it as a schema.org TV event.
During our case study, we realized various new use cases for
data provided by existing websites without needing to change
existing websites or services. Thus, we have successfully shown
that semantic data can be used as an enabler to link services to
websites. Already over 38% of all web pages provide semantic
data and since any website seeking commercial success needs
to be search engine optimized, we believe this percentage will
increase even further. Hence, our approach will be applicable
to even more websites in the future. Similarly, more and more
devices are becoming smart, and in the future, it might by
possible to send a recipe directly to a smart kitchen device,
e.g., to a smart refrigerator to check for available ingredients.

VIII. CONCLUSION AND OUTLOOK

In this paper, we propose Semantic Data Mediator as a
novel approach to link services to websites by leveraging
semantic data. Our approach extracts semantic data on the
client-side using a browser extension. Services able to consume
this data are identified by querying a user-specific service
registry. Thereafter, the data is converted and a wide range
of services can be invoked, including web services as well
as services offered by locally-installed applications and smart
devices. Using this approach, end users are no longer restricted
to the few services integrated by website developers and can
independently link a multitude of services, e.g., to process
calendar events, recipes, products, TV events, and many more.

We are currently working on further service adapters for
Linux, MacOS and iOS applications. In addition, we are explor-
ing how information extraction techniques can be integrated into
our approach to enable the use of SDM on websites not directly
containing semantic annotations. Moreover, we are developing
a methodology to simplify the converter development to an
even greater extent. Last but not least, we plan to deploy
our approach and to offer additional tool support as well as
guidance for end user developers to integrate further services.

[1]

[2]

[3]

[4]
[5]

[6]
[7]

[8

[t

[9]

[10]

(11]

[12]

[13]

[14]
[15]

[16]

(17]

(18]

[19]

[20]
(21]

(22]

(23]
[24]

[25]
[26]

[27]

REFERENCES

C. Bizer, R. Meusel, and A. Primpeli, “Web Data Commons - RDFa,
Microdata, and Microformat Data Sets.” [Online]. Available:
http://webdatacommons.org/structureddata/

S. Dustdar and W. Schreiner, “A Survey on Web Services Composition,
International Journal of Web and Grid Services, vol. 1, no. 1, pp. 1-30,
2005.

J. Rao and X. Su, “A Survey of Automated Web Service Composition
Methods,” in Semantic Web Services and Web Process Composition, ser.
LNCS. Springer, 2004, no. 3387, pp. 43-54.

S. Kona, A. Bansal, and G. Gupta, “Automatic Composition of
Semantic Web Services,” in ICWS 2007. 1EEE, 2007, pp. 150-158.
Y. Syu, S. P. Ma, J. Y. Kuo, and Y. Y. FanJiang, “A Survey on
Automated Service Composition Methods and Related Techniques,” in
SCC 2012, 2012, pp. 290-297.

C. Bizer, “The Emerging Web of Linked Data,” IEEE Intelligent
Systems, vol. 24, no. 5, pp. 87-92, 2009.

P. N. Mendes, H. Miihleisen, and C. Bizer, “Sieve: Linked Data Quality
Assessment and Fusion,” in EDBT/ICDT Workshops 2012. ACM,
2012, pp. 116-123.

X. Dong, E. Gabrilovich, G. Heitz, W. Horn, N. Lao, K. Murphy,

T. Strohmann, S. Sun, and W. Zhang, “Knowledge Vault: A Web-scale
Approach to Probabilistic Knowledge Fusion,” in KDD 2014. ACM,
2014, pp. 601-610.

H. Uchida, R. Swick, and A. Sambra, “The Web Browser
Personalization with the Client Side Triplestore,” in ISWC 2014, ser.
LNCS. Springer, 2014, no. 8797, pp. 470-485.

D. Huynh, S. Mazzocchi, and D. Karger, “Piggy Bank: Experience the
Semantic Web Inside Your Web Browser,” in ISWC 2005. Springer,
2005, pp. 413-430.

H. Han and T. Tokuda, “A Method for Integration of Web Applications
Based on Information Extraction,” in ICWE 2008, 2008, pp. 189-195.
J. David and J. Euzenat, “Linked Data from Your Pocket: The Android
RDFContentProvider,” in ISWC 2010 - Posters & Demonstrations Track.
CEUR-WS.org, 2010, pp. 129-132.

M.-E. Rosoiu, J. David, and J. Euzenat, “A Linked Data Framework for
Android,” in The Semantic Web: ESWC 2012 Satellite Events, ser.
LNCS. Springer, 2012, no. 7540, pp. 204-218.

S. A. Mcllraith, T. C. Son, and H. Zeng, “Semantic Web Services,”
IEEE Intelligent Systems, vol. 16, no. 2, pp. 46-53, 2001.

D. Martin, M. Paolucci, S. Mcllraith, M. Burstein, D. McDermott,

D. McGuinness, B. Parsia, T. Payne, M. Sabou, M. Solanki,

N. Srinivasan, and K. Sycara, “Bringing Semantics to Web Services:
The OWL-S Approach,” in Semantic Web Services and Web Process
Composition, ser. LNCS. Springer, 2004, no. 3387, pp. 26-42.

D. Kourtesis and I. Paraskakis, “Combining SAWSDL, OWL-DL and
UDDI for Semantically Enhanced Web Service Discovery,” in The
Semantic Web: Research and Applications, ser. LNCS. Springer, 2008,
no. 5021, pp. 614-628.

, “Web Service Discovery in the FUSION Semantic Registry,” in
Business Information Systems. Springer, 2008, pp. 285-296.

P. Shvaiko and J. Euzenat, “Ontology Matching: State of the Art and
Future Challenges,” IEEE Transactions on Knowledge and Data
Engineering, vol. 25, no. 1, pp. 158-176, 2013.

F. Hang and L. Zhao, “Supporting End-User Service Composition: A
Systematic Review of Current Activities and Tools,” in ICWS 2015.
IEEE, 2015, pp. 479-486.

F. Daniel and M. Matera, Mashups. Springer, 2014.

J. Yu, B. Benatallah, F. Casati, and F. Daniel, “Understanding Mashup
Development,” IEEE Internet Computing, vol. 12, no. 5, pp. 44-52,
2008.

M. Husmann, M. Nebeling, S. Pongelli, and M. C. Norrie,
“MultiMasher: Providing Architectural Support and Visual Tools for
Multi-device Mashups,” in WISE 2014, ser. LNCS, no. 8787. Springer,
2014, pp. 199-214.

H. Paulheim, Ontology-based System Integration. Springer, 2011.

Y. Wu, C. Yan, Z. Ding, G. Liu, P. Wang, C. Jiang, and M. Zhou, “A
Multilevel Index Model to Expedite Web Service Discovery and
Composition in Large-Scale Service Repositories,” IEEE Trans. Services
Computing, vol. 9, no. 3, pp. 330-342, 2016.

Maadinfo Services, “My CookBook XML Schema.” [Online]. Available:
http://mycookbook-android.com/site/my-cookbook-xml-schema/

D. Wolters, J. Kirchhoff, C. Gerth, and G. Engels, “Cross-Device
Integration of Android Apps,” in ICSOC 2016, ser. LNCS. Springer,
2016, no. 9936, pp. 171-185.

——, “XDAI-A: Framework for Enabling Cross-Device Integration of
Android Apps,” in ICSOC 2016 Workshops and Satellite Events, ser.
LNCS. Springer, 2016, (in press).

>



http://webdatacommons.org/structureddata/
http://mycookbook-android.com/site/my-cookbook-xml-schema/

	Introduction
	Related Work
	Overview of Service-to-Website Linking
	Design Goals
	Solution Idea
	Example Scenario

	Linking Services to Websites
	Semantic Data Formats and Ontologies
	Extracting Semantic Data
	Personal Service Registry
	Central Repository
	Finding Suitable Services
	Linking Services to Websites
	Data Conversion

	Service Adapters
	Implementation
	Case Study
	Conclusion and Outlook

