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Abstract. Case-based reasoning has recently been used to predict the
hourly electricity consumption of institutional buildings. Past measure-
ments of the building’s operation are modeled as cases and, combined
with forecast weather information, used to predict the electricity de-
mand for the next six hours. Elaborating on this idea, we present an
improved CBR approach that yields more accurate predictions of en-
ergy consumption. In particular, we develop improved (local) similarity
measures specifically tailored for this kind of application, and combine
these measures with a regression-based method for similarity learning.
Moreover, we incorporate a simple procedure for case adaptation. Exper-
imental results for a real case study confirm a significant improvement
in predictive accuracy compared to previous approaches.

1 Introduction

Buildings are major energy users, being responsible for more than one-third of
the world’s total energy consumption [1]. In North America (U.S. and Canada)
alone, institutional and commercial buildings account for 40% of total energy use
[3]. A significant proportion of a building’s energy consumption is used to operate
increasingly complex systems and technologies, such as advanced mechanical
heating, ventilation and air conditioning (HVAC) systems and thermal storage
systems, designed to store energy for proper subsequent use.

Building operation and control need to be improved in order to reduce energy
use, which becomes more and more a priority due to increasing energy prices
and operation costs. The use of intelligent technologies enabling buildings to be-
come proactive, by adapting their operation according to changing operational
and environmental conditions can have a major impact on energy consumption.
According to the Energy Star Program, energy consumption of commercial and



institutional buildings can be reduced by up to 35% by using intelligent tech-
nologies and by modifying control practices [5].

Forecasting building energy use is critical for optimizing the management
of thermal energy storage systems and for improving control and operation se-
quences in order to reduce energy consumption. It also enables energy use moni-
toring in order to identify periods of excessive consumption. Estimating the elec-
tricity consumption ahead of time enables improved planning of the operation
of thermal energy storage devices linked to electrically-driven HVAC systems,
optimizing their use and reducing peak loads and costs.

Different predictive models have been proposed for building energy use,
mostly based on data-driven (machine learning) methods that require a signif-
icant amount of a building’s historical operational data. However, data of that
kind is not available for all buildings, such as in the case of new and retrofit
buildings that underwent major changes to the point that previous data is no
longer representative of current operation. As argued by Platon et al. [19], case-
based reasoning offers a quite appealing alternative, not only due to being more
transparent than black-box models like neural networks, but also due to its abil-
ity to operate with even little experience, and to learn and improve predictive
accuracy as more data becomes available. Adding to this, we like to mention
the potential of CBR to properly adapt predictions from previous to similar
problems (such as retrofit buildings).

Recently, first promising results could indeed be achieved with a CBR model
for predicting electricity use in an institutional facility over a time horizon of 6
hours [19, 20]. However, the predictive error of that model was still almost twice
as high as that of a neural network, which severely hampers the willingness of
building owners and operators to adopt this type of model: as decisions regarding
building operation and control are made using the predicted energy consump-
tion, the accuracy of the model is crucial for optimal operation and planning.
Therefore, this paper presents various improvements made to the CBR model
that led to a significant increase in predictive accuracy.

The rest of the paper is organized as follows. We start with a short overview
of related work on energy prediction, prior to recalling the CBR model of [19, 20]
in Section 3. Our improved approach in then presented in Section 4. In Section 5,
this approach is empirically evaluated using data from an institutional Canadian
facility located in Calgary, prior to concluding the paper in Section 6.

2 Predicting energy demand in buildings

Different types of methods for predicting energy demand in buildings have been
proposed in the literature, including model-based approaches, statistical time
series analysis, and machine learning methods.

Model-based approaches make use of a building’s characteristics, such as
total heating and cooling demand, thermal characteristics of walls, windows,
other material proprieties, solar radiation, etc., in order to develop mathematical
models for the simulation of the building’s energy performance. Typical examples



of such approaches are DOE-2, BLAST, EnergyPlus (a combination of DOE-2
and BLAST), SPARK, and TRNSYS; for a detailed description of the most
commonly used simulation tools, we refer to [8].

The design of simulation models is a costly and time-consuming process,
which requires a significant amount of expert knowledge. As an alternative, ma-
chine learning methods such as Artificial Neural Networks (ANN) and Support
Vector Machines (SVM) can be used to induce models for energy demand pre-
diction in a data-driven way, i.e., on the basis of energy demand observed in the
past. For example, Azadeh et al. [4] train multi-layer perceptrons for predicting
annual energy consumption of high energy consumers in the industrial sector.
Likewise, Gonzalez and Zamarreno [12] predict energy consumption using a re-
current neural network. Using real data and taking forecast temperature values
as attributes, highly precise results are achieved. Hybrid approaches combining
simulation models with neural networks can be found in the literature, too, for
example to predict energy consumption of a passive solar building [14]. Examples
of prediction methods based on SVMs include [17] and [18]. A detailed review of
machine learning methods for the prediction of a building’s energy consumption
is provided by [23].

As already mentioned in the introduction, CBR has been put forward as yet
another alternative for the purpose of predicting a building’s energy consump-
tion more recently [16, 15,19, 20]. Compared to standard (model-based) machine
learning methods like ANN and SVM, case-based reasoning arguably comes with
a number of advantages. In particular, since CBR is an inherently incremental
process, it is able to adequately deal with an initial absence of historical con-
sumption data, while continuously improving when more data becomes available
over time. Moreover, CBR appears to be especially appealing for realizing knowl-
edge transfer from one building to another, i.e., for exploiting data about one
building to improve predictions for different yet similar buildings. First results
on the use of CBR for energy prediction are promising and adhere to the limits
recommended by the ASHRAE (American Society of Heating, Refrigerating and
Air-Conditioning Engineers) [2]. More details about CBR for energy prediction
are provided in the following section.

3 CBR for predicting electricity consumption

Since our work mainly builds on [19,20], we devote this section to a short
overview of these approaches, prior to presenting our improved method in Sec-
tion 4. Platon et al. are interested in predicting hourly energy consumption based
on historical measurements. To this end, they proceed from a case representa-
tion as shown in Table 2. Each case provides information about the development
of 10 variables Vi, ..., Vi (see Table 1) measured over 9 hours. The query case
contains values of these variables for the current hour (¢g) as well as the previous
two hours (t_; and t_»). Moreover, for the two variables air temperature and
humidity, it contains predicted values over a period of 6 hours. The goal is to
predict the electricity consumption over these 6 hours. The source case (memo-



Table 1: Variable description and measurement unit

Variable Unit

Vi Forecast outside air temperature (

Vo Forecast outside air relative humidity (

V3 Air handling unit 2 supply hot air temperature (°C

Vi Air handling unit 3 supply hot air temperature (°C

Vs West wing air handling unit supply cold air temperature (°C

Vs Air handling unit 4 supply cold air temperature (°C
(°C
(1/s
(°C
(

o
N

V7 Chiller outlet water temperature
Vg Chiller outlet water flow rate
Vo Boiler outlet water temperature
Vio Boiler outlet water flow rate

rized in the past) comprises the same information, though with real (instead of
forecast) values for temperature and humidity; besides, the values for the target
variable, electricity consumption, are given, too.

In the following, we denote by z; ; the value of the variable V; at time point
t; in the source case (1 < i < 10, —2 < j < 6), and by p; the value of the
consumption P at time t;. The corresponding values for the query case are
denoted y; ; and ¢;. The measurements of each variable V; over time are collected
in the time series x; and y;, respectively (corresponding to individual columns
in the case representation). The combination of all values are referred to as X
(source case) and Y (query case), respectively.

Similarity between cases is derived in two steps. First, given a new query case,
only those previous cases are considered that fulfill the following properties: The
time tq differs by at most one hour, and the absolute temperature at ¢y differs
by at most 2°C. Since the temperature and the time of the day are two very
important properties, this can be seen as a prefiltering of presumably irrelevant
cases (the similarity of which is formally set to 0).

For all other cases, the similarity is defined as a weighted average of the
similarities of the different (input) variables:

M
CS(X,Y) =Y _vi- VSj(zi, i) , (1)
=1

where M = 10 is the number of variables, v; > 0 is the weight of the variable V;,
and VS (x;,y;) the (local) similarity of the cases on that variable. As illustrated
in Figure 1, variable similarity is defined as

0 ‘ if Dy, (xi, y,) > dinaw
VS;(xlvyl) = Du;lgf;;yi)d;(finln if d;lnzn S Dw(mwyl) S dznaz . (2)

if Dy (i, ;) < d

min



Table 2: Example of a query and a source case. Numbers in blue in the query
case are forecast. Numbers in gray in the source case are known but not used
for comparison with the source case (for which they are not given).

query case

date and time Vi Vo Vo Vi Vs Vg Vo Vs Vo Vig
te 2014-04-07 15:00 10 32.2
ts 2014-04-07 14:00 9 39.9
ts  2014-04-07 13:00 8 32.2
ts 2014-04-07 12:00 9 33.8
to  2014-04-07 11:00 10 34.6
t1 2014-04-07 10:00 11 29.4 1
to 2014-04-07 09:00 12 29.9 29.4 28.4 15.8 24.9 30.5 -.05 67.3 76.2 203.1
2014-04-07 08:00 12 31.2 29.6 17.4 10.1 21.4 32.7 -.05 65.2 76.2 203.8
2014-04-07 07:00 11 31.0 28.3 9.7 10.6 22.4 30.8 -.04 66.3 73.2 197.6

B I R I ] i v

|
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source case
date and time Vi Vo Vi3 Vi V5 Vg Vi Vi Vo Vip P

te 2014-03-06 14:00 12 29.9 202.9
ts 2014-03-06 13:00 12 29.9 204.6
ts 2014-03-06 12:00 12 29.9 205.1
t3 2014-03-06 11:00 11 20.5 202.1
to  2014-03-06 10:00 12 28.4 203.8
t1  2014-03-06 09:00 11 29.3 204.6

to 2014-03-06 08:00 12 29.4 29.2 28.4 16.8 22.9 31.5 -.05 69.3 77.2 204.2
t—1 2014-03-06 07:00 11 31.2 29.8 17.6 10.1 22.4 32.7 -.05 65.2 76.2 204.8
t_2 2014-03-06 06:00 10 31.0 28.1 9.8 11.6 21.4 31.8 -.04 65.3 73.2 199.8




Here, di . and di,,. are variable-specific thresholds specifying what can be
seen as completely similar and completely dissimilar (cf. Table 3), and D,, is the

weighted Euclidean distance:

Do) \/Z}l}z w; (@i = Yi,5)°
TiyYi) = )
w\Liy Yi 2?2_2 w;

where n = 0 or n = 6 (depending on the variable), and the weights w; = 1+7/3
for j € {-2,-1,0} and w; = 1—35/7 for j € {1,...,6} are such that observations
closer to the current time ¢ty have a higher influence.
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1
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Fig. 1: Transformation of Euclidean distance into similarity.

At prediction time, given a query case Y, those previous cases Xi,..., Xg
with similarity CS(X,Y) > 0.8 are retrieved from the case base, and predictions
of energy consumption are obtained as weighted averages of the consumptions
observed for these cases:

Ao Zi{:l CS(Xy,Y) " Pk,j
T Y, OS(X,Y)

(4)

where py, ; is the consumption for case Xy, at time j € {1,...,6}.

As commonly done in the electricity and energy domain?, predictive per-
formance is measured in terms of the CV-RMSE (Coefficient of Variation Root
Mean Square Error): With {§; |t € T'} a set of predicted consumptions (for a sin-
gle but possibly also for several query cases) and {q; |t € T} the corresponding
observed values, this measure is defined as

T N
et S (@ — )
q

CV-RMSE = \/ x 100 (5)

where 7 is the mean of true values.

4 ANSI/BPI-2400-S-2012 Standard Practice for Standardized Qualification of Whole-
House Energy Savings Predictions by Calibration to Energy Use History



4 TImproved CBR model

Building on the CBR model as outlined in the previous section, we devised a
number of improvements that will be described in the following.

4.1 Variable similarity

According to (2), the similarity between two measurement sequences on a vari-
able is a non-linear transformation of the Euclidean distance between these two
sequences. While Euclidean distance is an established and reasonable measure,
it arguably fails to properly account for the trend in the corresponding time
series. Needless to say, looking at the trend is important when it comes to ex-
trapolating into the future. For example, Figure 2 shows the time series for a
specific variable (amplitude) and three cases. According to Euclidean distance,
the first one (green, solid line) is as similar to the second (blue, short dashes) as
to the third one (orange, long dashes). Looking at the trend, however, the third
one appears to be much more relevant. In particular, the third case seems to be
much more amenable to adaptation (cf. Section 4.3 below).
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Fig. 2: Example of time series with different shape.

To capture the trend of time series, we define a second (variable) similarity
measure based on the well-known cosine similarity [10,9]: A sequence of values
x; = (i —2,%i—1,--.,%in) is considered as a bundle of two-dimensional vectors®

{(AIj,Atj)T = (xi,j+1 — xi,j; I)T |] = —2, e, — 1} 5

and similarity is defined as the averaged (normalized) angle between the corre-
sponding vectors (cf. Figure 3):

Wi ) — b S Az;Ay; +1
VSi (x4, i) = m(n+2) j:Z—Q “ <\/(ij)2 + 1\/(ij)2 + 1) )

5 In our case, the difference between time steps, Atj, is always 1, because measure-
ments are made on an hourly basis.



Finally, we define a new variable similarity measure in terms of a weighted
average of the original measure (2) and the new (trend-based) similarity (6),
where the weights have been determined empirically:

Fig. 3: Representation of time series as a bundle of vectors. The similarity for
each pair of vectors depends on the angle between them (0 for an angle of 7, 1
for an angle of 0). These similarities are averaged to obtain the overall similarity.

4.2 Case similarity

According to (1), the similarity between two cases is defined as a weighted av-
erage of the variable similarities. In previous work, the flexibility of weighting
has actually not been exploited, i.e., all weights were simply set to the same
value v; = 1/M. However, since different variables are obviously of different
importance, a generalization of this approach is desirable.

The determination of optimal variable weights v; is closely connected to the
problem of learning similarity measures, which has been studied intensively in
CBR [21, 22, 11]. More specifically, the problem is to optimally combine given lo-
cal (variable) similarities into a global (case) similarity [6]. To solve this problem,
we take advantage of the fact that, according to (1), the combination is a linear
one, i.e., global similarity is a linear (convex) combination of local similarities.

Concretely, we formalize the problem of learning weights v; for variables V;
as a problem of linear regression: For every pair of cases X and Z from our case
base, we can compute the (local) variable similarities

(S1,-..,80m) = (VSl(ml,zl),...,VSM(:EM,yM)) elo, 1M .

Moreover, we can compute a similarity s,,; on the consumptions measured for
X and Z, again using the transformation (2) of their Euclidean distance, with



proper choices of d,i, and dypq..® Ideally, the (global) case similarity is close to
this value, i.e., sout = CS(X, Z). Therefore, the weights v; in (1) should be such

that
M

Zvj “Sj R Sout - (8)

j=1

As already said, an (approximate) equation (8) can be derived for each pair of
cases from the case base, and each such equation can be seen as a training exam-
ple for a (multivariate) linear regression problem, with the values of the input
variables given by (s1,...,sp) and the value of the output variable by Syu:.
Thus, optimal weights can simply be found by solving this regression problem:;
more specifically, since the weights, which correspond to the regression coeffi-
cients, must be non-negative and sum up to 1, a constrained regression problem
needs to be solved.

4.3 Adaptation

According to (4), similar cases retrieved from the case base are used in the pre-
diction step without any adaptation. As a potential improvement, we propose a
method for adaptation that is inspired by the idea of amplitude transformation
[7]. More specifically, assuming that the future relation of energy consumption
for two cases will approximately equal the relation in the past, the energy con-
sumption of a source case retrieved from the case base is shifted by a proportional
factor prior to using it for prediction.

Recall that the values g_s, g_1, qo for electricity consumption are assumed to
be known for the query case (while consumption needs to be predicted for the
six hours ahead), and let pg _2,pr —1, k0 denote the consumption of the kth
neighbor in the past three hours. We then replace each of the future values py ;
(j =1,...,6) of that case by

Dii - < 4—2+q-1+1t4q )
7\ Pr,—2 + Ph—1 + Pro

before using it for prediction in (4); see Figure 4 for an illustration.

4.4 Other modifications

Instead of retrieving all past cases with a similarity CS(X,Y") exceeding a fixed
similarity threshold (of 0.8), we fix the number of neighbors to be used for
prediction to K = 50 and retrieve the K most similar ones (if there are less than
K cases with a similarity > 0, these cases are all retrieved).

5 We used dpmin = 15 and dmae = 35.
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Fig. 4: Adaptation: The source sequence (solid line on the bottom) is shifted up-
ward, so that the mean in the past (first three time points, gray region) coincides
with the mean on the query (dashed line); the future values of the query need
to be predicted and are therefore shown in gray.

Table 3: Variable thresholds and weights

Variable dmin dmaz weight
Forecast outside air temperature 2 6 0.1961
Forecast outside air relative humidity 10 25 0.1540
Air handling unit 2 supply hot air temperature 2 6 0.0001
Air handling unit 3 supply hot air temperature 2 6 0.0001
West wing air handling unit supply cold air temperature 2 6 0.009

Air handling unit 4 supply cold air temperature 2 6 0.1065
Chiller outlet water temperature 2 15 0.1075
Chiller outlet water flow rate 5 30 0.0001
Boiler outlet water temperature 2 15 0.3064
Boiler outlet water flow rate 5 30 0.1284

5 Experiments

5.1 Data

Data was collected from an institutional building facility located in Calgary (Al-
berta, Canada) for working days between 1°¢ of January 2013 and 9** of May
2014 (with some missing data from 29" of March to 1°* of May). The building
has a total floor space of 16,800 m? and houses mainly office and storage spaces.
The HVAC equipment consists of 5 air handling units served by a one chiller
and 3 natural gas boilers. The data consists of hourly averages of measurements
related to the operation of the chiller, boilers and air handling units, the building
electricity consumption, and weather information—current and forecast values
of outside air temperature and relative humidity (see list of variables in Table 1).
Building operating modes corresponding to office working and non-working hours
were identified. The building consumes approximately 80% more electricity dur-



ing working hours—7 AM to 5 PM—than during non-working hours; only the
model developed using working-hours measurements is presented in this paper.

5.2 Methods

Our CBR approach was implemented as described in the previous section. Under
certain circumstances, it may happen that the case base does not contain a
single case that is similar (i.e., has a similarity > 0) to the query case. In such a
situation, our method yields the current consumption (i.e., the consumption ¢
at time ty) in the query case as a default prediction for ¢; for the next time points
( =1,...,6); this predictor will also be used as one of our baselines (see below).
For learning the weights of variables in the case similarity measure (cf. Section
4.2), we constructed a set of training data by randomly sampling 10,000 pairs of
cases from the case base. The weights obtained by linear regression, which are
shown in Table 3, are plausible and indeed give the highest importance to those
variables that are intuitively deemed most relevant.

We compare our CBR approach with a number of other methods that are
used as baselines to compete with. The first three baselines are extremely simple,
and they all forecast a constant value for the six hours prediction horizon. They
predict, respectively,

— the average consumption of all past cases stored in the case base;

— the average consumption (¢_2 + ¢—1 + go)/3 of the past three hours in the
query case;

— the current consumption ¢ in the query case.

Moreover, following [19], we also included an artificial neural network (ANN),
namely a multilayer perceptron with one hidden layer consisting of 10 neurons,
trained using the back propagation algorithm with Levenberg-Marquardt opti-
mization. As input, the network takes the measurement values of the current
and past two hours of a case, including the energy consumption (hence 33 values
in total), and as output, it produces predictions of the energy consumption for
the next six hours.

5.3 First experiment

In the first experiment, the data is separated into two parts: a set of past cases
with measurements from the first m months of 2013 (where m € {4,6,...,12})
that corresponds to our case base and serves as training data for the ANN, and
the remaining set of future cases till September 2014 that serves as test data.
Performance is reported in Table 4 in terms of the CV-RMSE (5) on the test
data. As can be seen, our CBR approach compares quite favorably and is much
better than the baselines. The performance of the ANN is even slightly better if
enough training data is available, but CBR seems to have advantages if training
data is sparse.



Table 4: Results of the first experimental study in terms of CV-RMSE (%), with
the best performance highlighted in bold font.

training data baseline 1 baseline 2 baseline 3 ANN  CBR
01/2013 — 04/2013  9.97 9.55 8.80 8.99 7.94
01/2013 - 06/2013  10.15 9.50 8.65 8.15 7.39
01/2013 — 08/2013  10.23 9.41 8.58 7.63 7.45
01/2013 — 10/2013  10.12 9.35 8.66 7.31 7.69
01/2013 - 12/2013  10.35 9.54 8.73 6.17 6.55

5.4 Second experiment

In the second experiment, we applied our CBR approach in an online setting,
in which prediction and learning (case memorization) are interleaved: Cases are
considered in a sequence one by one, and at each time step ¢,

— a prediction of the consumption for the t** case is obtained based on the
previous t — 1 cases already stored in the case base,

— the true consumption is revealed, and the cumulative error (CV-RMSE on
the first ¢ cases) is updated,

— the new case is added to the case base.

As can be seen in Figure 5, the performance is relatively poor in the beginning,
when only few cases are available, but quickly improves and then reaches a
level similar to the error (around 6.3%) in the previous experiment. This is a
significant improvement compared to the previous CBR approach, for which the
error is twice as high [19, 20].

6 Conclusion

This paper presents the application of a CBR model for predicting the hourly
electricity consumption of an institutional building located in Calgary, Canada.
The model uses measurements related to the building operation, as well as mea-
sured and forecast weather information to predict the building electricity con-
sumption for the next 6 hours. It is based on a previous CBR approach applied to
the same problem, however, modifications and extensions related to variable and
case similarities, case selection and adaptation resulted in significant predictive
accuracy improvements: The model has a test error approximately twice as low
compared to the previous approach. This is important, as predictive accuracy
is critical in enabling operators to take the appropriate operation and control
decisions that ultimately result in reduced building energy consumption.

There are several directions to be pursued in future work. First, there is
probably still some scope to further improve predictive accuracy. Perhaps more
interestingly, however, we also plan to apply the approach of credible case-based
inference [13], which allows for predicting confidence intervals instead of only
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Fig. 5: Performance of the CBR model in the online setting.

point values. Thus, in our case, predictions will be intervals of the form [¢}°", ¢;],
coming with the guarantee that the true consumption will lie in that range with
high probability. Predictions of that kind, reflecting uncertainty in a proper way,
can usefully support safety-critical decisions, for example regarding peak loads.

Second, going beyond a single building, we plan to extend our approach to-
ward knowledge (case) transfer between different building. As already mentioned,
CBR appears to be especially suitable for realizing this kind of transfer learn-
ing, which, as a critical step, requires a reasonable approach to inter-building
case adaptation in addition to the simpler intra-building case adaptation as pre-
sented in this paper. While hitherto results on single buildings, including those
presented here, are certainly promising, we expect CBR to develop its true po-
tential in that scenario.
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