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IRIS: A Robust Information System Against Insider DoS Attacks

MARTINA EIKEL and CHRISTIAN SCHEIDELER, University of Paderborn

In this work, we present the first scalable distributed information system, that is, a system with low storage
overhead, that is provably robust against denial-of-service (DoS) attacks by a current insider. We allow a
current insider to have complete knowledge about the information system and to have the power to block any
ε-fraction of its servers by a DoS attack, where ε can be chosen up to a constant. The task of the system is
to serve any collection of lookup requests with at most one per nonblocked server in an efficient way despite
this attack. Previously, scalable solutions were only known for DoS attacks of past insiders, where a past
insider only has complete knowledge about some past time point t0 of the information system. Scheideler
et al. [Awerbuch and Scheideler 2007; Baumgart et al. 2009] showed that in this case, it is possible to design
an information system so that any information that was inserted or last updated after t0 is safe against a
DoS attack. But their constructions would not work at all for a current insider. The key idea behind our IRIS
system is to make extensive use of coding. More precisely, we present two alternative distributed coding
strategies with an at most logarithmic storage overhead that can handle up to a constant fraction of blocked
servers.
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1. INTRODUCTION

Distributed denial-of-service (DoS) attacks are one of the biggest threats in the Inter-
net. The basic idea behind a DoS attack is to make a service unavailable to its intended
users. There are various ways of achieving that, like causing computationally expen-
sive operations [Kandula et al. 2005], downloading large files [Ratliff 2005], exploiting
protocol bugs, or just overloading servers with junk. Information services like Google
and Akamai are frequently under attack, and the Domain Name System also has been
involved in many attacks, either as a victim itself or as a means to raise reflected or
DNS amplification attacks [Wikipedia 2013].

The predominant approaches in information systems to deal with the threat of DoS
attacks are to use redundancy and information hiding: information that is replicated on
multiple servers is more likely to remain accessible during a DoS attack, in particular,
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if the attacker does not know the servers or how the data items are distributed among
the servers. For example, if �(log n) copies of a data item are placed randomly among
n servers and these random positions are not known to the attacker, then it is easy
to show that any strategy of the attacker to block half of the servers will not block
all of the copies with high probability.1 The situation is completely different, however,
when considering an insider, that is, someone who has complete knowledge about the
system. Since information cannot be hidden any more in this case, it seems unavoidable
to replicate a data item across more than t servers to remain accessible under a DoS
attack that can block up to t servers, which creates a huge storage overhead. This is why
in our previous work we just focused on past insiders [Awerbuch and Scheideler 2007;
Baumgart et al. 2009]. However, it turns out that this dilemma can be circumvented
when using coding, which is the key idea of the IRIS system presented in this article
(“IRIS” is a short form of “Insider-Resistant Information System”).

1.1. Model

To keep the presentation of our ideas clean and simple, we will use a simple model. We
assume that the information system consists of a static set V of n reliable servers of
identical type. (We deliberately use the word “server” here since assuming a static set
of nodes is unrealistic for peer-to-peer solutions; we focus instead on solutions based on
dedicated equipment provided by one or more institutions or companies.) The servers
are responsible for storing the data as well as handling the user requests. We assume
that all data items are of the same size, and a data item x is uniquely identified by
a key key(x). The universe of all possible keys is denoted by U , and we set m = |U |.
The only type of user requests that we consider are lookup(k) requests, where k is any
key in U (i.e., the purpose of the system is just to deliver information, not to let users
update it). Given a lookup(k) request, the system is supposed to either return the data
item x with key(x) = k or return NULL if no such data item exists.

Every server knows about all other servers and can therefore directly communicate
with any one of them. This does not endanger scalability since we assume the set of
servers to be static and we do not expect the servers to maintain an open connection
to each other server. Instead, we only expect the servers to hold the IP addresses of
all other servers. This does not cause a problem either, since millions of IP addresses
can easily be stored in main memory in any reasonable computer today. We will use
the standard synchronous message passing model for the communication between
the servers. That is, time proceeds in synchronized communication rounds, or simply
rounds, and in each round each server first receives all messages sent to it in the
previous round, processes all of them, and then sends out all messages that it wants
to send out in this round. A message will never get lost unless it is sent to a blocked
server. We assume that the time needed for internal computations is negligible (the
IRIS protocols are simple enough to satisfy this property). Note, however, that using
local synchronizers [Peleg 2000], our algorithms also work in asynchronous settings.
All we need is a bounded transmission time between two nonattacked servers.

The competition between the information system and the attacker works as follows.
Initially, the attacker can inspect the entire system and selects, based on that, an
arbitrary ε-fraction of the servers to be blocked (where ε depends on the limitations
of the given system). A server that is blocked will not react to messages from the
other servers. We assume that the servers have a failure detector that allows them to
determine whether a server is blocked so that statements like “if server i is blocked
then . . .” are allowed in the protocol. In this work, we assume the adversary to block

1“With high probability,” or for short, “w.h.p.,” means a probability of at least 1 − 1/nc, where the constant c
can be made arbitrarily large.
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a fraction of the servers by DoS attacks. Instead, we could also allow the adversary
to simply crash a fraction of the servers. The latter attacks are called crash failures,
where DoS attacks represent one reason for crash failures.

The attacker may then select an arbitrary collection of lookup requests, one per
nonblocked server (the most simple case of an even request distribution among servers).
That is, the keys selected by the attacker may or may not be associated with data items
stored in the system, and the attacker is also allowed to issue multiple lookup requests
for the same key. The task of the system is to correctly serve all of these requests.

In order to measure the quality of the information system, we introduce the following
notation. A storage strategy is said to have a redundancy of r if r times more storage
(including any control storage) is used for the data than storing the plain data. We call
an information system

—scalable if its redundancy is at most polylog(n),
—efficient if any collection of lookup requests specified by the attacker can be processed

correctly in at most polylog(n) many communication rounds in which every server
sends and receives at most polylog(n) many messages of at most polylog(n) size, and

—robust if any collection of lookup requests specified by the attacker can be processed
correctly even if up to an ε-fraction of the servers is blocked by an insider.

Our goal is to design an information system that is scalable, efficient, and robust for
an ε that is as large as possible. As we will see, the IRIS system satisfies all of these
properties.

1.2. Related work

Due to their importance, DoS attacks are a well-studied problem (e.g., see Dittrich
et al. [2005] and Mirkovic and Reiher [2004] for an overview). Unfortunately, it is often
difficult to distinguish DoS traffic from legitimate traffic, which limits the effectiveness
of network-layer and transport-layer DoS prevention tools [Walfish et al. 2005], such as
filtering out anomalies [Mazu Networks Inc. 2008], blacklisting particular IP addresses,
using TCP SYN cookies [Bernstein 2008], and pushback [Ioannidis and Bellovin 2002].
This has led some researchers to follow alternative means such as letting legitimate
clients “speak up” [Walfish et al. 2005, 2006].

In this article, we do not seek to prevent DoS attacks but rather focus on how to
maintain good availability and performance during the attack. Our system is based
on the distributed hash table (DHT) paradigm (e.g., Bhargava et al. [2004], Druschel
and Rowstron [2001], Harvey et al. [2003], Ratnasamy et al. [2001], and Stoica et al.
[2002b]), with the new twist of using coding. Various DoS-resistant systems based on
DHTs have already been proposed [Kargl et al. 2001; Keromytis et al. 2002; Morein
et al. 2003]. For instance, the Secure Overlay Services approach [Keromytis et al. 2002]
uses proxies on Chord to defend against DoS attacks. A Chord overlay is also used by
the Internet Indirection Infrastructure i3 [Stoica et al. 2002a] to achieve resilience to
DoS attacks. Other DoS-limiting architectures have been proposed in Oikonomou et al.
[2006] and Yang et al. [2005]. Many of these systems are based on traffic analysis or
some indirection approach.

Nonmalicious DoS attacks like flash crowds have also been studied in the context
of DHTs. Examples in the systems community include CoopNet [Padmanabhan and
Sripanidkulchai 2002], Backslash [Stading et al. 2002], and PROOFS [Stavrou et al.
2002], and there is also theoretical work [Naor and Wieder 2003]. However, these
works only consider scenarios where many requests are targeted to the same data
item, but there are harder instances like many requests to different items at the same
location (which can be set up by an attacker when the hash functions are known).
These instances can still be handled in DHTs using techniques originally proposed for
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CRCW PRAMs [Awerbuch and Scheideler 2006], but these techniques cannot protect
the system against DoS attacks that can block specific servers.

The first DHTs that are robust against past-insider DoS attacks were proposed in
Awerbuch and Scheideler [2007] and Baumgart et al. [2009]. A past insider only has
complete knowledge of the information system up to some past time point t0. For this
kind of insider, it is possible to design an information system so that any information
that was inserted or last updated after t0 is safe against a DoS attack [Awerbuch
and Scheideler 2007; Baumgart et al. 2009]. But the constructions proposed in these
papers would not work at all for a current insider because they are heavily based on
randomization to ensure unpredictability.

For a system to be able to tolerate a current insider, as considered in this work, the
key idea is to make massive use of distributed coding. In particular, we make use of
erasure codes. An important class of these codes is (n, k) maximum distance separable
(MDS) codes. An (n, k) MDS code stores data in n storage nodes such that any failure
of (n − k) storage nodes can be tolerated. Hence, (n, k) MDS codes achieve the optimal
lower bound on the storage overhead, which is n/(n− k). Examples of MDS array codes
(where the input is organized into columns and rows) are: Reed-Solomon codes [Reed
and Solomon 1960], EVENODD [Blaum et al. 1994], RDP [Corbett et al. 2004], B-
code [Xu et al. 2006], X-code [Xu and Bruck 1999], and STAR-code [Huang and Xu
2008].

While MDS codes are optimal in terms of storage overhead, they may have a signifi-
cant overhead in the repair bandwidth. The repair bandwidth was initially introduced
by Dimakis et al. [2010] and denotes the amount of information to be communicated
during the repair of node failures. Specifically, for the case of repairing only a single
node failure, the overhead on the repair bandwidth may become too large. This problem
motivated the development of so-called regenerating codes, which were first introduced
by Dimakis et al. [2010]. The codes presented in this work match the lower bound on
the storage cost as well as MDS codes, while additionally significantly reducing the
repair bandwidth. Dimakis et al. [2010] additionally showed that in case of a single
failure, the repair bandwidth is lower bounded by l(n − 1)/(n − k), where l denotes
the capacity of the nodes. Besides the codes in Dimakis et al. [2010], many further
regenerating codes have been proposed that achieve this lower bound (e.g., Tamo et al.
[2013], Papailiopoulos et al. [2011], Cadambe et al. [2011], and Suh and Ramchandran
[2010, 2011]).

Distributed coding has proved to be useful not only in distributed storage systems
but also in the field of information dissemination and gossiping. For the multicasting
problem, Ahlswede et al. [2000] showed that it is not sufficient to regard data to trans-
fer just as an unsplittable entity but that the optimal throughput from the source to
targets in a network can be achieved if and only if the intermediate nodes code mes-
sages. In fact, it suffices for an intermediate node to compute linear combinations of
the received data for coding it [Li et al. 2003]. In order to create those linear combina-
tions, Ho et al. [2006] showed that randomly chosen coefficients work for any network,
w.h.p. Haeupler [2011] introduced a new technique (denoted as projection analysis) for
analyzing the runtime of gossip algorithms that are based on random linear network
coding.

In previous coding schemes, data was encoded separately from each other; that is,
outputs of the encoding of tuples of data items are not encoded with each other once
more. This yields a storage overhead that is linear in the maximum number of node
failures allowed. Since the information system presented in this work is supposed to
have at most a logarithmic redundancy, we needed to come up with a new distributed
coding scheme that decreases the redundancy by hierarchically interlacing encoded
data items with each other.
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1.3. Our Contribution

Consider a distributed information system that holds that for each data item d, it is
supposed to store c copies at c servers. If the adversary blocks these c servers, then
the system would not be able to correctly serve a lookup request for d. That is, if
we allow the adversary to block c servers, then the distributed information system
needs to store c + 1 copies of each data item in order to be able to correctly answer
each lookup request. Hence, when considering a current insider who knows everything
about the information system, standard replication and information hiding techniques
are useless to efficiently protect the system against DoS attacks. In order to circumvent
this problem, we present a distributed information system that makes massive use of a
(very simple) distributed coding strategy. For this purpose, we partition each data item
into c pieces using a conventional coding strategy (e.g., Reed-Solomon codes) such that
c/4 of these pieces suffice to recover the complete data item. On top of this, we use a
very simple distributed coding strategy that only consists of some parity computations
and guarantees the recovery of the data on a blocked server in case of a single failure.
In order to guarantee the recovery of all data items if there is a failure of many
servers, tuples of data blocks are encoded with each other in a blockwise fashion. By
intelligently reapplying and interlacing this block-based coding strategy, our system
will allow a huge fraction of the servers to be blocked. This distributed coding strategy
will ensure that data is not only replicated onto a few servers but also that each server
holds some encoding information for every data item in the system.

The development of a lookup protocol, which enables us to efficiently serve any set of
lookup requests despite a massive DoS attack by an insider, implied several challenges
we had to deal with, for instance, the problem of answering the requests such that
no additional congestion at the servers is caused that would block the servers. All in
all, we developed a distributed information system IRIS that serves any set of lookup
requests (with at most a constant number of requests at each nonblocked server) in
polylogarithmic time, with at most polylogarithmic congestion at each server in each
round and an at most logarithmic redundancy.

More precisely, we present two variants of IRIS, Basic IRIS and Enhanced IRIS, with
the following properties given that m is at most polynomial in n.

THEOREM 1.1. Basic IRIS and Enhanced IRIS are both scalable and efficient. Whereas
the Basic IRIS just needs a constant redundancy to protect itself against insider DoS
attacks blocking up to γ · n1/ log log n servers for a constant 0 < γ < 1/24, Enhanced IRIS
needs O(log n) redundancy but can protect itself against insider DoS attacks blocking
up to a constant fraction of the servers.

2. BASIC IRIS

The key idea of Basic IRIS is to make massive use of distributed coding. Hence, we start
by describing the coding and storage strategy of Basic IRIS in Section 2.1. Afterward,
in Section 2.2, we present the lookup protocol of our system. The presentation of Basic
IRIS finishes in Section 2.3 with a correctness proof of the lookup protocol.

2.1. Storage and Coding Strategy

In the following, we first introduce the coding strategy Basic IRIS uses (Section 2.1.1)
followed by the presentation of the complete storage strategy of our system (Sec-
tion 2.1.2).

2.1.1. Coding Strategy. This distributed coding strategy is a very simple error-
correcting code that is able to recover one out of k ∈ N symbols. In other words, assume
k servers holding one data item each while exactly one of these servers is blocked. Then,
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Fig. 1. Visualization of the encoding of k data items d1, . . . , dk.

our coding strategy guarantees that the data item held by the blocked server can be
recovered using only the (parity) information the remaining k − 1 servers hold. To be
more precise, the encoding of k data items d1, . . . , dk works as follows: We first compute
D = d1 ⊕ d2 ⊕ . . .⊕ dk, where ⊕ is the bitwise parity operation. Then we cut D into k− 1
pieces D1, . . . , Dk−1 of equal size (up to an additive 1) and set d′

i = di ◦ Di, i ∈ {0, . . . , k},
where ◦ is the concatenation operator. Finally, we compute Dk = D1 ⊕ D2 ⊕ · · · ⊕ Dk−1
and set d′

k = dk ◦ Dk. See Figure 1 for a visualization of the encoding of k data items.
Our coding strategy satisfies the following lemma.

LEMMA 2.1. Let the data items d1, . . . , dk be encoded with each other using the previ-
ously described coding strategy resulting in d′

1, . . . , d′
k. Then, if one d′

j , j ∈ {1, . . . , k}, is
missing, the information in d′

1, . . . , d′
j−1, d′

j+1, . . . , d′
k suffices to recover d1, . . . , dk.

PROOF. Suppose the data block d′
j is missing. Since each data block d′

i , i ∈
{1, . . . , k}\{ j} contains di, the information in any corresponding di can be recovered
directly. Furthermore, the parity coding strategy allows us to recover Dj = ⊕

i �= j Di.
This allows us to recover D by computing D = D1 ◦ . . . ◦ Dk−1, which then allows us to
recover dj by computing dj = D ⊕ ⊕

i �= j di.

Up to this point, our coding strategy only guarantees the recovery of one out of k
symbols, but we want Basic IRIS to be able to correctly answer each lookup request
despite the attack of an insider that blocks up to γ n1/ log log n servers (0 < γ < 1/24).
That is, using just one encoding routine for all data items at the servers is not sufficient.
Instead, we hierarchically encode data items with each other. That is, we first encode
different blocks of k data items with each other. Next, we select new blocks each
consisting of k results of the first encoding and encode these blocks. This procedure is
repeated until each server stores some encoding information of each data item that is
stored in the system. In order to construct the blocks of k data items each, we make
use of a k-ary butterfly.

Definition 2.2 (k-ary Butterfly). For any d, k ∈ N, the d-dimensional k-ary butterfly
BF(k, d) is a graph G = (Vk, E) with node set Vk = [d + 1] × [k]d and edge set E with

E = {{(i, x), (i + 1, (x1, . . . , xi, b, xi+2, . . . , xd))}
| x = (x1, . . . , xd) ∈ [k]d, i ∈ [d], and b ∈ [k]}.
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Fig. 2. Visualization of a k-ary butterfly BF(k, d) for k = d = 3. For a better readability, most of the edges
from level 2 and 3 are omitted. The edges shown between levels 1, 2, and 3 visualize three k-blocks at levels 1
and 2. The dashed box denotes the subbutterfly BF((2, 111)). The thick solid lines in the dashed box denote
the edges of UT((2, 111)). The thick dotted lines denote the edges of LT ((2, 121)).

A node u of the form (�, x) is said to be on level � of G. For a node u = (�, x), LT (u) is the
unique k-ary tree of nodes reached from u when the butterfly is going downward (i.e., to
nodes on levels �′ > �) and UT(u) is the unique k-ary tree of nodes reached from u when
the butterfly is going upward. Moreover, let BF(u) be the unique k-ary subbutterfly of
dimension � ranging from level 0 to � in BF(k, d) that contains u. Finally, B(u) is the
unique k-ary subbutterfly of dimension 1 (which is just a bipartite graph of k nodes on
each side) ranging from level � to � + 1 in BF(k, d) that contains u. We also call B(u) a
k-block at level �.

See Figure 2 for a visualization.
We are now ready to describe how to encode any set of n data items with each other

using the k-ary butterfly as the underlying topology. Consider any BF(k, d), and let
n = kd. The encoding of a set of data items d0, . . . , dn−1 of uniform size works as follows:
Initially, di is placed in node (0, i) for every i ∈ {0, . . . , n − 1}. Given that in level �
we have already assigned data items d(�, x) to the nodes (�, x), we use the previously
described coding strategy to assign data items d(� + 1, x) to the nodes at level � + 1:
that is, for each k-block B at level � with nodes (�, x1), . . . , (�, xk), we encode the data
items d1 = d(�, x1), . . . , dk = d(�, xk) with each other resulting in d′

1, . . . , d′
k. Finally, we

set d(� + 1, xi) = d′
i for all i ∈ {1, . . . , k}.

For a node v in BF(k, d), let |d(v)| denote the size of the data stored in node v. Since
to each node (� + 1, xi) a bit string of size |d(�, xi)|/(k− 1) ± 1 is appended, the following
lemma holds.

LEMMA 2.3. For any k-block B with node sets (�, x1), . . . , (�, xk) and (�+ 1, x1), . . . , (�+
1, xk), it holds that |d(� + 1, xi)| ≤ (1 + 1/(k − 1))|d(�, xi)| up to an additive 1.

For simplicity, we will ignore in the following the additive 1 because |d(�, xi)| may not
be perfectly divisible by k− 1. This will only cause a constant factor deviation from the
bounds below as long as the original data items have a size of z with z ≥ k.

The decoding of the data items in k-ary butterfly follows a bottom-up approach. That
is, beginning with the last level, level logk n, the nodes first encode all k-blocks from
level logk n − 1. The decoding of a single k-block proceeds as described in Lemma 2.1.
Using this information, the nodes continue to decode all k-blocks from level logk n − 2.
The nodes proceed in this manner until all k-blocks from level 0 have been decoded.
Note that by Lemma 2.1, a k-block can only be decoded if from the set of k servers that
hold the data encoded in the block of at most one server is blocked.

2.1.2. Storage Strategy. In the previous section, we showed how a set of n data items is
encoded with each other, but we did not describe how these n data items are chosen or
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at which servers the data resulting from the encoding is stored. In the following, let n
be the number of servers with n = kd for some d ∈ N. For each server si, we introduce
d virtual nodes (0, i), . . . , (d, i) that server si will emulate. We connect all virtual nodes
with each other as defined by the k-ary butterfly BF(k, d). Whenever a virtual butterfly
node (�, i) is supposed to perform an action (like forwarding a message or storing some
data), the server si will perform this action instead. We say a server s is connected to
a server s′ (via the k-ary butterfly) if s emulates a butterfly node that is in BF(k, d)
connected to a butterfly node that is emulated by s′.

In order to present how a set of m′ < m ∈ N data items can be stored in Basic IRIS,
we distinguish between the following three cases depending on m′:

Case 1. If m′ = n, that is, Basic IRIS has to store exactly n data items d0, . . . , dn−1.
In this case the encoding of these data items works just as described above. According
to Lemma 2.3, node (�, i) in BF(k, d) has the property that d(�, i) = d(� − 1, i) ◦ p�(i)
for some parity information p�(i) with |p�(i)| ≤ |d(� − 1, i)|/(k− 1). Hence, it suffices for
server si to store di, p1(i), . . . , pd(i) in order to be able to recover every d(�, i).

Case 2. If Basic IRIS has to store m′ < n data items, we may just add dummy data
items (i.e., all bits are 0 until we have n data items) such that case 1 is applicable.

Case 3. If Basic IRIS has to store m′ > n data items, we introduce for tuples of n
data items a layer and for each layer we reuse the strategy applied in the previous
cases. To be more specific, we proceed as follows: Let K ⊆ U be the set of all keys that
have a data item in the system. The idea is to encode each n data items with each
other as described in case 1. That is, we partition the |K| data items into O(|K|/n)
layers of n data items each and encode the data items of each layer separately with
each other using the encoding strategy described previously. Hence, we need to map
each data item not only to one server but also to one of these layers. To be more pre-
cise, we use the following hashing strategy to distribute the data among the servers
and layers: we use a hash function f : U → V to assign each data item to a server
and a hash function g : U → {0, . . . , γ · |K|/n} for some constant γ to assign each
data item to a layer. The goal is to choose these two hash functions such that the
function h : U → V × {0, . . . , γ · |K|/n}, x �→ ( f (x), g(x)) is injective; that is, for ev-
ery layer i at most one key is assigned to each server. Given that this is the case,
each layer will define a set of n data items (when padded with dummies) with one
per server, so we can apply the coding strategy described in case 1 to each of these
layers.

The simplest way of realizing an injective h with low storage overhead for h (in fact,
γ = 2 suffices) is to use cuckoo hashing [Pagh and Rodler 2001]: each data item has
two optional positions, and they are distributed among these optional positions so that
there is no collision. Of course, in this case, a lookup request for some data item d
would involve looking at both optional positions, but this would just double the work
spent for the lookup operation described next, so in the following we just assume that
h is an injective hash function that can be directly evaluated to determine the unique
server and layer of a datum. Furthermore, for simplicity, we assume in the following
that m ≥ n.

In the following, we examine the redundancy needed for the previously described
encoding strategy. First, we consider the redundancy that occurs if at most n data
items need to be stored in the system. Let d(si) = di ◦ p1(i)◦ . . .◦ pd(i). It is easy to prove
by induction that |p�(i)| ≤ (1 + 1/(k − 1))�−1|di|/(k − 1) for all � ∈ {1, . . . , logk n}, which
implies the following lemma under the assumption that |di| = z for all i.

LEMMA 2.4. For any k > d and z ≥ k, it holds that |d(si)| ≤ (1 + e)z for every server si.
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PROOF. By definition of d(si), for each server si, it holds that

|d(si)| = |di| +
d∑

j=1

|pj(i)| ≤ |di| +
d∑

�=1

(
1 + 1

k − 1

)�−1

· |di|
k − 1

.

Since (1 + x) ≤ ex for all x ≥ 0, we get

|d(si)| ≤ |di| +
d∑

�=1

e(�−1)/(k−1) · |di|
k − 1

≤ |di|
(

1 + d · e(d−1)/(k−1)

k − 1

)
.

Since k > d, this term is upper bounded by (1 + e)z, which proves the lemma.

Notice that d = logk n = log n/ log log n. Hence, in order to ensure k > d, we must
choose k > log n/ log log n. For n > 4, it holds that log n > log n/ log log n. Thus, for the
rest of this section, we can fix k to log n. Then, for exactly n data items of size at least
k, we have a storage strategy with a constant redundancy.

Now assume more than n data items have to be stored in the system. Then, if γ is
constant, Lemma 2.4 implies that the overall redundancy for this case is still constant.

Up to this point, we assumed in each case that each data item that is supposed to be
stored in the system is mapped via a single hash function h to a single server. But this
is not yet enough for our lookup protocol to work. In our lookup protocol, we assume
that each data item is cut into c = �(log m) pieces, which are mapped to different
servers. For this mapping, we will make use of c hash functions h1, . . . , hc with the
same properties as h that together satisfy certain expansion properties. To avoid the
redundancy to go up to �(c), we will assume that z (the size of the data items) is at
least kc.

Furthermore, our lookup protocol requires that c/4 of these pieces of a data item d
are sufficient to completely recover d. This approach can efficiently be realized by using
Reed-Solomon codes [Reed and Solomon 1960]. That is, with Reed-Solomon codes, we
can encode each data item d into c pieces such that

∑c
i=1 |di| = O(|d|) and any c/4 of

these pieces suffice to recover d. In order to minimize the overall redundancy to O(1) (or
O(log n) in case of Extended IRIS), we assume data items to have a size of �(log n log m).
Here, the log n factor is needed due to our parity-based encoding scheme and log m is
needed due to the Reed-Solomon codes we use. In summary, we obtain the following
result.

COROLLARY 2.5. When using Reed-Solomon codes, Basic IRIS has a constant
redundancy.

2.2. Lookup Protocol

In the following, we assume each nonblocked server receives at most one lookup re-
quest for a data item. The lookup protocol is supposed to describe which actions the
nonblocked servers perform in order to return the requested data item. Recall that for
each nonblocked server with a request for some data item d, it suffices to receive c/4
pieces of d in order to recover d and thus correctly answer the request.

The naı̈ve approach in which each server with a request for a data item d simply
asks the servers s1, . . . , sc that hold the c pieces of d for these pieces does not work
for the following reasons: First of all, all the servers s1, . . . , sc could be blocked, which
disables them to answer any requests. In another scenario, the adversary could have
sent all nonblocked servers a lookup request for the same data item d. In this case,
each nonblocked server would contact the same servers s1, . . . , sc, causing these servers
to become congested and hence not be able to answer requests.
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Hence, we need a more clever strategy to serve the requests, which is described
in the following. This strategy will only be followed by the nonblocked servers; that
is, the blocked servers do not send or receive anything. Let s be a nonblocked server
that received a lookup request for some data item d. The lookup protocol is divided
into three stages: a preprocessing stage, a probing stage, and a decoding stage. In the
preprocessing stage, the nonblocked servers determine a unique representative for
each blocked server so that we can route in the k-ary butterfly as if all servers are still
nonblocked (but, of course, the data in the blocked servers is lost). Also, information
is collected that allows us to bound the work of decoding specific pieces of data items.
In the probing stage, we issue read requests to the c pieces of each di and select c/2 of
them to be decoded in the decoding stage.

2.2.1. Preprocessing Stage. The preprocessing stage consists of two further substages:
the butterfly completion stage and the decoding depth computation stage.

Butterfly Completion. The goal of the butterfly completion stage is to make sure that
for any DoS attack, the servers are reorganized such that we again have a complete
k-ary butterfly but only over the nonblocked servers. This is done by determining for
each blocked server s a unique nonblocked server s′ that becomes the representative
of s. That is, s′ will in the rest of the protocol take over the role of s in all actions the
server s is supposed to perform. By this, s′ can only act as s, but it does not have access
to the data stored at s. Once a server s′ becomes the representative of a blocked server
s, it still has to be ensured that each other nonblocked server that is connected to s via
the underlying k-ary butterfly knows the representative s′ of s. Hence, in the rest of
the lookup protocol, whenever a server s is supposed to contact a blocked server s′, s
contacts the representative of s′ instead.

In short, the butterfly completion works as follows: First, a tree of depth
O(log n/ log log n) is built over all nonblocked servers. Afterward, the constructed tree is
transformed into a doubly linked list L of n nonblocked servers. The created list L will
then be rearranged such that each nonblocked server with identifier i is at position i in
L and for each blocked server with identifier j there is a nonblocked server at position
j in L that is declared the representative of the blocked server. Finally, the resulting
list is transformed into a k-ary butterfly such that at the end, each nonblocked server
s that is connected to a blocked server s′ in the initial k-ary butterfly is now connected
to the representative of s′.

Since the implementation of the previous steps is rather straightforward and not of
too big interest for the actual lookup, a detailed description of the butterfly completion
stage is moved to the appendix.

Nevertheless, at the end of the butterfly completion stage, the following lemma holds.

LEMMA 2.6. The butterfly completion stage guarantees that after (2 + o(1)) log nrounds
and with a congestion of at most O(log n) at each nonblocked server, the following holds:

—For each blocked server, a unique nonblocked server as its representative is determined.
—Each server that is connected to a blocked server s via the k-ary butterfly knows the

representative of s.
—Each nonblocked server is the representative of at most one blocked server.

Decoding Depth Computation. Once the k-ary butterfly has been re-established, we
can go ahead with collecting additional information. In particular, we are interested
in the decoding work for specific data items. This is determined with the help of the
following recursively defined function:
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Fig. 3. Visualization of decoding depth computation with some nodes and edges of the k-ary butterfly
omitted. Black/white colored nodes represent blocked/nonblocked nodes. The labels next to the nodes denote
their decoding depth at the corresponding level.

Definition 2.7 (Decoding Depth). For a node u = (�, x) of BF(k, d), the decoding depth
dd(u) is defined as:

dd(u) =

⎧⎪⎨
⎪⎩

0 if u is not blocked
∞ if � = d and u is blocked
max
v∈C(u)

{dd(v)} + 1 if � < d and u is blocked,

where C(u) denotes the set of children of u in LT (u) excluding one child with the
biggest decoding depth among these children. The decoding depth of a server si is
defined as dd(si) = dd((0, i)), and the decoding depth of a subbutterfly BF(u) is defined
as dd(BF(u)) = max(0,x)∈BF(u) dd((0, x)).

See Figure 3 for a visualization.
The decoding depth d(u) of a butterfly node u immediately implies an asymptotical

upper bound on the time needed for restoring the data of a blocked server.

LEMMA 2.8. If dd(si) = δ for a blocked server si, then any data item that has been
assigned to si can be restored in time O(δ) by the nodes in BF((δ, i)).

In a distributed fashion, the decoding depth is computed as follows: starting from
level logk n, the servers compute the dd(u)-values of the butterfly nodes level by level
and disseminate them among their neighbors in the next lower level until the dd-values
of all nodes have been computed. This can certainly be done in O(logk n) communication
rounds with congestion O(k) in each round. At the end, every server si knows dd(si).
Then the servers compute the dd(BF(·))-values level by level in a way that, starting
in level 0, each node u sends its dd(BF(u))-value to all of its neighbors v in the next
higher level, which will then be able to determine their dd(BF(v))-value by taking the
maximum of the received values. Hence, at the end, every node u (the server owning it,
respectively) knows dd(BF(u)). This process also takes O(logk n) communication rounds
with congestion O(k) in each round.

With Lemma 2.6 it follows:

LEMMA 2.9. The preprocessing stage takes at most (2 + o(1)) log n communication
rounds with at most O(log2 n) congestion at every nonblocked server at each round.

2.2.2. Probing Stage. With the probing stage, the actual lookup for the requested data
items begin. Before we go into details of the probing stage, we will provide a short
overview.

Overview. The idea of the probing stage is to forward a lookup request for each piece
di of a requested data item d along c paths from level logk n to level 0 in the k-ary
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Fig. 4. Visualization of the probing stage. The curved lines denote the paths along which the probe messages
are sent.

butterfly. The goal of this probing is to determine up to which level the c requests (also
denoted as probes) can be routed without a node on the paths becoming congested and
without exceeding the decoding depth of one of the nodes. If enough probes reach level
0, the corresponding nodes can return the requested pieces to the server that issued the
requests. This server can in turn recover the requested data item using the returned
pieces. Otherwise, the request for d will be assigned to a level � ∈ {1, . . . , logk n} at which
not too many probes failed. Such a request will further be handled in the decoding stage.

Details. At the beginning of the probing stage, each nonblocked server s that received
a lookup request for some data item d chooses c nonblocked servers s1(d), . . . , sc(d) ∈ V
uniformly and independently at random. This can simply be realized by selecting c
random servers in each round until c nonblocked servers have been found (which takes
O(1) communication rounds w.h.p.).

The server s then asks each server si(d) to route a probe(d, i) message along the
unique path from the butterfly node on level logk n emulated by si(d) to the butterfly
node on level 0 emulated by the server that holds hi(d). See Figure 4 for a visualization.

The actual probing takes place in synchronized rounds. The first logk n + 1 rounds
work as follows. In round 0, all probe messages are active, and their origin is declared
to be the server s that initiated that probe. In round r, all probe messages that remain
to be active are currently in a butterfly node v at level logk n − r. First of all, v checks
the following rules:

—If the number of different (d, i)-pairs with a probe is more than αc (for a sufficiently
large constant α defined later), then v deactivates all probes and informs their origins
about the level in which that happened. Such a node v is called congested.

—If dd(BF(v)) > logk n−r, then v deactivates all probes and informs their origins about
the level in which that happened. Such a node v is called blocked.

If none of the two rules apply, then v distinguishes between two cases. If logk n− r > 0,
then v first combines, for those pairs (d, i) with multiple probes, all of these probes into
a single probe and declares itself as the new origin of that probe. Then v forwards all
probes to the next node on level logk n − r − 1 along their paths. If logk n − r = 0, that
is, the probes have reached their destination at level 0 in the butterfly, v delivers the
requested data pieces of its probes to their origins (by using splitting if needed), who
then can decode the data item using RS codes. These probes have been successful.
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Fig. 5. Visualization of combining and splitting of messages. In this example the nodes v4, v5, v6 send a
probe message for the same pair (d, i). The curved lines illustrate the combining of the probes, and the
dashed lines illustrate the splitting of the responses. The sets next to some nodes denote the origins of the
probes.

The splitting of the messages works as follows: Let u be a node that is the origin of
a probe (d, i), but not the initial origin of that probe. Whenever u receives a message
concerning the probe (d, i), u forwards the message to all nodes it has previously (during
the splitting process) stored as former origins of probe (d, i). By this, within O(logk n)
communication rounds all servers get informed about which of their c probes were
successful or got deactivated at a level. See Figure 5 for a visualization of the combining
of probes and the splitting of their responses.

If a server s that is responsible for a lookup request for d receives at least c/2 success
messages, it can recover d from the collected pieces (or it discovers that no data item
exists in the system for the given search key in case there is a key mismatch) and is
done, so it does not participate in the decoding stage any more. Otherwise, s declares d
to belong to level �, where � ∈ {1, . . . , logk n} is the smallest level that contains at least
c/2 active (d, i) probes (i.e., (d, i) probes that were not deactivated at level � or earlier
for d).

Notice that actually c/4 pieces of a data item suffice to decode the whole data item,
but for the following reasons we use a bound of c/2 here: In the decoding stage, a server
s that receives a lookup request for a data item d does not initiate a request for all c
pieces of d but only for a subset S of these pieces that have not been deactivated at the
currently considered level in the probing stage. In the decoding stage, the size of this
subset S has to be chosen such that any half of the pieces suffice to recover d. This is
given if we choose |S| = c/2.

It is easy to see that the probing stage satisfies the following property.

LEMMA 2.10. The probing stage takes at most O(logk n) communication rounds with
at most O(log2 n) congestion in every node at each round, w.h.p.

Furthermore, one can show that if the adversary can block at most (1/24) · 2logk n

servers, then the number of data items with requests belonging to a level exponentially
decreases in k, such that there is at most a logarithmic number of data items with
requests belonging to the last level, level logk n. A detailed analysis of this fact is given
in Section 2.3.1.

2.2.3. Decoding Stage. In the probing stage, each request has either been served or
been assigned to a level � ∈ {1, . . . , logk n}. In the decoding stage, the latter requests
will be served by encoding appropriate subbutterflies. Again, we start with a short
overview of this stage followed by a more detailed description.
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Fig. 6. Visualization of (round i of) phase r of the decoding stage.

Overview. The decoding stage proceeds in logk n phases. Each phase � ∈ {1, . . . , logk n}
is dedicated to the handling of all requests belonging to level �. That is, for each request
for a data item d belonging to level �, we first determine whether enough subbutterflies,
which contain those dis that belong to level �, can be decoded. In that case, these
subbutterflies will be decoded such that the server responsible for the request for d
receives enough pieces of d and it can recover d using Reed-Solomon codes. Otherwise,
the request for d is determined to belong to level � + 1, which will be handled in the
next phase of the decoding stage.

Details. Each single phase � ∈ {1, . . . , logk n} is dedicated to decode the requests
belonging to level � and is divided into O(logk n) rounds. In round 0 of phase �, each
server s that is responsible for a lookup request for some data item d that belongs to
level � chooses a set A(s) ⊆ [c] of c/2 indices that were active at level � in the probing
stage. For such a server s and i ∈ A(s), let w be the butterfly node in level 0 responsible
for hi(d) and let w̃ be the butterfly node in level logk n emulated by si(d). See Figure 6 for
a visualization. Each such server s then sends for each i ∈ A(s) a decode(d, i) message
to si(d), which will then be forwarded (and possibly combined with other decode(d, i)
requests) along the unique path in the butterfly from w̃ to w until it reaches a node
u on level �. From this point on, the decode(d, i) request will be spread (and possibly
combined with other requests to the same (d, i) item on the way) to all nodes in UT(u).
This takes � further rounds. The aim of this process is to determine whether BF(u)
can be decoded without causing nodes to become congested. For this purpose, in round
i of this spreading, each node v at level � − i determines whether it is congested. v is
congested if one of the following conditions is satisfied:

—The number of different (d, i)-pairs for which v received a decode message at the
beginning of this round is more than βck for a sufficiently large constant β.

—v received a decode(cong) message at the beginning of this round.

If v is not at level 0, it forwards a message to its children in UT(v) depending on the
following two cases:

(1) If v is congested, then v sends a decode(cong) message to its children in UT(v).
(2) If v is not congested, then v first combines, for the (remaining) pairs (d, i) with

multiple decoding messages, all of those decoding messages to one message. Sub-
sequently, v forwards for all remaining (d, i) pairs the message decode(d, i) to its
children in UT(v).
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In the following, we denote the subbutterfly BF(v) of a node v as congested if at least
one node from BF(v) receives more than βck decode messages for different (d, i)-pairs.
By using the symmetry of the k-ary butterfly and the way messages are forwarded, it
is easy to show the following lemma (Lemma 2.11).

LEMMA 2.11. Let u be a node at level � that received a decode request in phase �. If
BF(u) is congested, then each node on level 0 of BF(u) receives a decode(cong) message
after at most � rounds.

Thus, by Lemma 2.11, after � rounds the server that simulates u knows whether BF(u)
is congested. If BF(u) is congested, then u informs the origins of the decode (d, i)
requests it received about that (by using splitting if needed). If BF(u) is not congested,
then u initiates the decoding of BF(u), which will recover the data pieces of all of the (at
most βck) remaining requests that arrived at u within O(�) communication rounds with
a congestion of at most βck2 per node (by using the distributed decoding described in
Section 2.1). The recovered pieces are then delivered to their origins (by using splitting
if needed).

At the end of phase �, every server s with a request belonging to level � has received
responses for all i ∈ A(s). If at least c/4 of these requests deliver decoded pieces, the
server can recover its requested data item and is done. Otherwise, it changes its request
to belong to level � + 1 so that it continues to be processed in the next phase. It is easy
to see that the decoding stage satisfies the following property.

LEMMA 2.12. The decoding stage takes at most O(log2
k n) communication rounds with

at most O(log3 n) congestion in every node at each round, w.h.p.

Analogously to the probing stage, in the decoding stage, the number of data items
with a request belonging to some level � exponentially decreases in k. Hence, in the
last phase of the decoding state, at most a logarithmic number of requests has to be
handled. Obviously, this does not cause any congestion at any server such that at the
end of the decoding stage, each lookup request has been served. A detailed analysis
can be found in Section 2.3.2.

2.3. Analysis of Basic IRIS

In this section, we show that at the end of the lookup protocol, each lookup request has
been served. The analysis is split into two parts: the analysis of the probing stage and
the analysis of the decoding stage.

2.3.1. Analysis of the Probing Stage. In the following, we show that in the probing stage,
not “too many requests” are declared to belong to the same level. To be more precise, we
show that if the adversary can block at most (1/24) · 2logk n servers, then the number of
data items with requests belonging to a level exponentially decreases such that there
is at most a logarithmic number of data items with requests belonging to the last level,
level logk n.

LEMMA 2.13. If the adversary can block at most (1/24) · 2logk n servers, then for every
� ∈ {1, . . . , logk n}, the number of data items with requests belonging to level � is at most
2γ n/k� with γ < 1/24.

Lemma 2.13 can be shown by adapting the analysis in Awerbuch and Scheideler
[2007] (see Lemmas 4 and 5). Before we give a proof, we point out the main differ-
ences to the analysis in Awerbuch and Scheideler [2007] and introduce some required
definitions and claims.
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The new aspect that we need to exploit in the analysis is the fact that if dd(BF(v)) > �
for a node v on level �, then at least 2� nodes in BF(v) must be blocked. This is because
for every node (i, x) in BF(k, d) with dd((i, x)) > � for some � ≤ logk n− i, LT ((i, x)) must
contain a complete binary tree of blocked nodes of depth � rooted at (i, x) (Claim 2.14).
This tree is also called a witness tree as it witnesses a high decoding depth of a node.
Notice that due to the structure of the BF(k, d), the leaves of such a witness tree must
be distinct. Hence, if dd(BF(v)) > � for a node v on level �, then there must be a node
(0, x) in BF(v) with a witness tree of depth �, which implies the lower bound on 2�

blocked nodes in BF(v).

CLAIM 2.14. Let (i, x) ∈ BF(k, d) with dd((i, x)) > � for � ≤ logk n − i. Then, LT ((i, x))
contains a witness tree of depth �.

PROOF. The proof is by induction on �. For � = 1, let u = (i, x) ∈ BF(k, d) with dd(u) >
1. Assume LT (u) does not contain a complete binary tree of blocked nodes of depth 1.
Then, at most one child of u in LT (u) is blocked, and therefore by definition of dd(u),
it holds that dd(v) = 0 for all v ∈ C(u). Hence, dd(u) = 1, which contradicts dd(u) > 1.
Suppose that for each node u = (i, x) ∈ BF(k, d) with dd(u) > � for � < logk n − i, LT (u)
contains a complete binary tree of blocked nodes of depth �. We show that the claim
also holds for � + 1. Let u = (i, x) ∈ BF(k, d) with dd(u) > � + 1. By definition of dd(u),
there exist at least two children v and w of u in LT (u) with dd(v), dd(w) ≥ dd(u)−1 > �.
Then, by the induction hypothesis, LT (v) and LT (w) contain a complete binary tree Tv

and Tw of blocked nodes of depth �. Notice that LT (v) and LT (w) are subtrees of LT (u).
Since dd(u) ≥ 1, u is also blocked, and the tree induced by connecting u to the roots of
Tv and Tw is a complete binary subtree in LT (u) of blocked nodes of depth � + 1.

In the following, we denote BF(v) as blocked if the adversary blocks at least 2�

servers from BF(v). BF(v) is denoted as congested if the servers from BF(v) receive in
total more than k�αc/2 probes for different (d, i) pairs in round �. For a server s that
received a lookup request for some data item d, we define s(�)

i (d) as the node at level
� on the unique path of length logk n from v to w, with v being the butterfly node on
level logk n emulated by si(d) and w being the butterfly node in level 0 responsible for
hi(d). A data item d is called blocked/congested at level � if there are blocked/congested
BF(s(�1)

i1 (d)), . . . , BF(s(�r )
ir (d)) with �i ≥ �, r = c/4, and i1, . . . , ir being pairwise different.

We can now give an overview of the proof of Lemma 2.13. The idea of this proof
is as follows: First, we show that whenever a probe(d, i) is deactivated on a level �,
then BF(s(�)

i (d)) is blocked or congested (Claim 2.15). Moreover, if a data item d is
declared to belong to level �, then at least c/2 of its (d, i)-probes have been deactivated
either because of blocked subbutterflies or because of congested subbutterflies at level
� or higher. Many data items that belong to level � therefore imply many blocked
or congested subbutterflies. But since only a limited fraction of them can be blocked
or congested, we show that only a limited fraction of the data items can belong to
level �. As a crucial ingredient for the proof, we require the hash functions h1, . . . , hc
to satisfy a certain expansion property, which holds w.h.p. if the hash functions are
chosen uniformly and independently at random (Claim 2.16).

CLAIM 2.15. Whenever a (d, i) pair is deactivated in a level � ≥ 0 by a node v, then
BF(v) is blocked or congested, w.h.p.

PROOF. If (d, i) was deactivated due to dd(BF(v)) > �, then by Claim 2.14, BF(v)
contains at least 2� blocked servers. Now assume (d, i) was deactivated due to a too high
congestion at v. Then, v received in round � probe messages for more than αc different
(d, i) pairs. Since the starting points for the lookup requests are chosen uniformly at
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random, it holds that E[|M�(w)|] = E[|M�(w′)|] for all w,w′ at level � in BF(v) with
M�(w) being the set of (d, i)-pairs with probes received by node w. The Chernoff bounds
[Chernoff 1952] can be applied, implying

Pr[|M�(w)| ≥ (1 + δ)E[|M�(w)|]] ≤ e− min{δ,δ2}E[|M�(w)|]/3

for all δ ≥ 0 and all w ∈ BF(v). Setting δ = 1/2 gives E[|M�(w)|] ≥ 2αc/3 for all
w ∈ BF(v), w.h.p. Hence, the expected number of (d, i)-pairs with probes sent to BF(v)
is at least 2αk�c/3, w.h.p. Furthermore, with M being the number of (d, i)-pairs with
probes sent to BF(v), the Chernoff bounds imply that

Pr
[

M ≤ 2(1 − δ)
3

αck�

]
≤ e−δ2αck�/3 for all δ ∈ [0, 1].

With δ = 1/4, we get that there are more than αck�/2 (d, i)-pairs with probes sent to
BF(v), w.h.p.

Hence, if a lookup request belongs to level �, then more than c/2 nodes that received
a probe for this lookup request are congested or blocked at level � − 1, which together
with Claim 2.15 implies that if a lookup request for some data item d belongs to level
�, then d must be blocked or congested at level �−1. In order to show that there cannot
be too many of these data items, we introduce an expander property for collections of
hash functions.

Recall that U is the key universe and m = |U |. For any subbutterfly B, let V (B) be
the set of servers emulating the nodes of B. Let H be the collection of hash functions
h1, . . . , hc. Given a set S ⊂ U of keys and a k ∈ N, we call F ⊆ S × {1, . . . , c} a b-bundle
of S if every d ∈ S has exactly b many pairs (d, i) in F. Given h1, . . . , hc and a level
� ∈ {0, . . . , logk n}, let 
F,�(S) be the union of the servers involved in these pairs at
level �, that is, 
F,�(S) = ⋃

(d,i)∈F V (BF(s(�)
i (d))). Given a 0 < σ < 1, we call H a (b, σ )-

expander if for any � ≤ logk n, any S ⊆ U with |S| ≤ σn/k�, and any b-bundle F of S, it
holds that |
F,�(S)| ≥ k�|S|.

In the following, we make use of the following claim, as similarly stated in Awerbuch
and Scheideler [2007].

CLAIM 2.16. If the hash functions H = {h1, . . . , hc} are chosen uniformly and indepen-
dently at random and c ≥ 12 log m, then H is a (c/4, 1/24)-expander, w.h.p.

Although Awerbuch and Scheideler [2007] proved a similar version of Claim 2.16,
for the sake of completeness we add the (adapted) proof here.

PROOF. Suppose that, for randomly chosen functions h1, . . . , hc, H is not a (c/4, σ )-
expander. Then there exists an i ≤ logk n, a set S ⊆ U with |S| ≤ σn/ki, and a
c/4-bundle F of S with |
F,i(S)| < ki|S|. We claim that the probability ps,i that such a
set S of size s exists is at most(

m
s

)(
cs

cs/4

)(
n/ki

s

)(
s

n/ki

)cs/4

. (1)

For the following reasons, Equation (1) holds: There are
(m

s

)
ways of choosing a subset

S ⊂ U . Furthermore, there are
( cs

cs/4

)
ways of choosing cs/4 pairs (d, j) for F and at

most
(n/ki

s

)
ways of choosing a set W of s butterflies of dimension i witnessing a bad

expansion of the pairs in F. The fraction of collections H for which the selected pairs
(d, j) indeed have the property that BF(s(i)

j (d)) ⊆ W is equal to ( s
n/ki )cs/4 because the

hash functions h1, . . . , hc are chosen independently and uniformly at random. Next we
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simplify ps,i. By using the conditions on c and σ in the lemma and with c ≥ 12 log m
and m is sufficiently large, it holds that

ps,i ≤
(

m
s

)(
cs

cs/4

)(
n/ki

s

) (
s

n/ki

)cs/4

≤
(em

s

)s
(4e)cs/4

( en
ski

)s
(

ski

n

)cs/4

=
⎡
⎣em

s
·
(

4e1+4/c ·
(

ski

n

)1−4/c
)c/4

⎤
⎦

s

(∗)≤
[
m ·

(
4e1+4/c · σ 1−4/c

)c/4
]s

≤
[

m ·
(

1
2

)c/4
]s

≤ 1
ms .

In (∗), we used σ ≥ kis/n. Hence, summing up over all possible values of s and i, we
obtain a probability of having a bad c/4-bundle of at most (2 logk n)/m, which proves
the lemma.

We remark that the hash functions have to form a (c/4, σ )-expander for some constant
σ for our lookup protocol to work, but they do not have to be chosen at random. The
previous proof just illustrates that if they are chosen at random, they will form a
(c/4, σ )-expander w.h.p.

We are now ready to upper bound the number of congested and blocked data items
at level �, which proves Lemma 2.13.

PROOF OF LEMMA 2.13. We start with upper bounding the number of blocked data
items. Let S be a set of data items that are blocked at level �. We will show that
|S| < γ n/k�. Recall that a data item d is blocked at level � if at least c/4 of the
subbutterflies BF(s(�i )

i (d)) are blocked with �i ≥ �; that is, each of these contains at
least 2�i blocked servers. Adding the corresponding pairs (d, i) to F, we obtain a c/4-
bundle F of S. Since a subbutterfly of level �′ contains k�′

servers in total, by Claim 2.14,
a 2�′

/k�′
fraction of the servers of a blocked subbutterfly of level �′ are blocked, which

is at least 2logk n/n for any �′ ≤ logk n. Therefore, if the adversary can only block up to
εn servers with ε < γ · 2logk n/n, then the number of servers covered by all BF(s(�i )

i (d))
with (d, i) ∈ F must be less than γ · n. Since 
F�(S) is exactly the set of these servers, it
holds that |
F,�(S)| < γ · n. On the other hand, we know from Claim 2.16 that for any
c/4-bundle F of S with |S| ≤ (1/24)n/k�, |
F,�(S)| ≥ k�|S|. Assume there is a set S of
blocked data items of size γ n/k�. Then, according to Claim 2.16, |
F,�(S)| ≥ γ n, which
is not possible. Hence, the number of blocked data items at level � is less than γ n/k�.

Similarly, the number of congested data items can be upper bounded. Let S be a set
of data items that are congested at level �. Analogously to the case of blocked data
items, we can construct a c/4 bundle F of S. First, we show that for a sufficiently
large α, there exists less than a γ -fraction of congested subbutterflies on level � for
all � ∈ {0, . . . , logk n}. Recall that a subbutterfly on level � is congested if it receives
more than αck�/2 probes for different (d, i) pairs. Since there are at most (1 − ε)n
lookup requests in total, at most c(1 − ε)n probes arrive at level �. Thus, at most
c(1−ε)n/(αck�/2) = 2(1−ε)n/(αk�) subbutterflies can be congested at level �. Since there
are exactly n/k� disjoint subbutterflies at level �, the fraction of congested subbutterflies
at level � is upper bounded by 2(1−ε)n/(k�α)

n/k� = 2(1 − ε)/α. Hence, for α > 2(1 − ε)/γ , at
most a γ -fraction of the subbutterflies on level � is congested for all � ∈ {0, 1 . . . , logk n}.
That is, all of the congested subbutterflies BF(s(li )

i (d)) with (d, i) ∈ F together contain
at most a γ -fraction of the subbutterflies on level �. Again, with Claim 2.16, we can
deduce that |S| < γ n/k� for γ < 1/24. Hence, all in all, only less than (2γ )n/k� data
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items can be blocked or congested at level �, implying an upper bound of n/k� for the
number of data items with lookup requests that belong to level �.

2.3.2. Analysis of the Decoding Stage. Analogously to Lemma 2.13, for the decoding stage,
the following lemma holds:

LEMMA 2.17. For every phase r, the number of data items with requests belonging to
level r is at most ϕn/kr with ϕ = �(k).

PROOF. We show the lemma by induction on r. For r = 1, the claim obviously
holds. In the following, let γ = 1/24 and ϕ = γ (k + 2). The proof of the induction
step is similar to the proof of Lemma 2.13. We start with determining the number
of congested subbutterflies of dimension r. If the subbutterfly BF(u) of a node u is
congested, then by definition, there exists a node in BF(u) that receives more than
βck decode messages for different (d, i)-pairs. Since ϕ/(2γ k) < 3 = β, it holds that
βck > ϕc/(2γ ), implying that a congested subbutterfly BF(u) of a node u receives more
than ϕc/(2γ ) decode messages for different (d, i)-pairs. By the induction hypothesis,
there are at most ϕn/kr messages with requests for different data items in level r.
For each lookup request that belongs to level r, c/2 decode messages are sent. Hence,
in total, there are less than ϕn/kr · c/2 · 2γ /ϕc = γ n/kr congested subbutterflies of
dimension r. Let S be a set of congested data items at level r. Similarly to the proof
of Lemma 2.13, there exists a c/4-bundle F for S. Since there are less than γ n/kr

congested subbutterflies of dimension r, it holds that |S| < (1/24)n/kr. And since each
subbutterfly of dimension r contains kr nodes, less than γ n servers simulate a node
of a congested subbutterfly of dimension r, that is, |
F,r(S)| < γ n. On the other hand,
Claim 2.16 can be applied, giving |
F,r(S)| ≥ kr|S|, and it follows that |S| ≤ γ n/kr.
Even if all requests for congested data items do not finish in round r, together with
the number of requests belonging to level r + 1 from the probing stage, by Lemma 2.13
there are at most 2γ n/kr+1 + γ n/kr data items with requests that participate in phase
r + 1 of the decoding stage. For ϕ = γ (k + 2), this term is upper bounded by ϕn/kr+1,
which proves the lemma.

Hence, less than �(k) data items with lookup requests participate in the last phase,
phase logk n, of the decoding stage and therefore each node receives in this phase
decoding requests for less than �(k) different data items. Thus, there cannot be a
congested subbutterfly any more. This, together with the fact that the decoding depth
of BF(k, d) must be less than logk n when blocking at most γ 2logk n = γ n1/ log log n nodes
with γ < 1, implies that all remaining data items can be decoded at the end.

Lemma 2.9, Lemma 2.10, Lemma 2.12, and Lemma 2.17 imply the following theorem.

THEOREM 2.18. If the adversary blocks less than 1/24 · log n/ log log n many servers,
then, by using only a constant redundancy, any set of lookup requests (one per non-
blocked server) is served correctly after at most O(log2 n) communication rounds with a
congestion of at most O(log3 n) at every node in each round, w.h.p.

3. ENHANCED IRIS

In the following, we extend the previously presented Basic IRIS system to the Enhanced
IRIS, which is able to handle up to a constant fraction of the servers with a redundancy
of O(log n). Before we describe the encoding strategy of Enhanced IRIS (Section 3.2)
and the lookup protocol (Section 3.3), we need to introduce some further preliminaries
(Section 3.1).
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Fig. 7. Visualization of a permutation π with expansion 2/3. The upper nodes denote the order of the nodes
in U ; the lower nodes denote the order of the nodes in π (U ). The rounded rectangles around the nodes denote
the groups. The thick rounded rectangles around the upper nodes denote the groups in S.

3.1. Preliminaries

Instead of using a simple parity coding strategy to recover from any blocked server
within a k-block, we need a more complex coding strategy that can recover from any two
blocked servers within a k-block. Here, we can use the EVENODD scheme proposed in
Blaum et al. [1994]. EVENODD is a 2-erasure correcting code that only uses exclusive
OR operations and is optimal in terms of redundancy.

When using this scheme, we obtain the following results.

LEMMA 3.1. For any k-block B with node sets (�, x1), . . . , (�, xk) and (�+ 1, x1), . . . , (�+
1, xk) in which at most two (� + 1, xj) are blocked, the information in the remaining
nodes (� + 1, xi) suffices to recover d(�, x1), . . . , d(�, xk).

In order to encode k data items of equal size z with each other, EVENODD adds in
total 2z parity bits. That is, 2z/(k − 2) parity bits (up to an additive 1) are assigned
to each server that holds one of the d data items, which implies the following lemma
(Lemma 3.2).

LEMMA 3.2. For any k-block B with node sets (�, x1), . . . , (�, xk) and (�+ 1, x1), . . . , (�+
1, xk), it holds that |d(� + 1, xi)| ≤ (1 + 2/(k − 2))|d(�, xi)| up to an additive 1.

Another aspect in which the Enhanced IRIS system deviates from the Basic IRIS
system is that the k-blocks are no longer organized in a k-ary butterfly. Instead, we
make use of permutations with certain expansion properties.

Definition 3.3. Let U be a set of N nodes that are organized into N/K groups of K
consecutive nodes. A permutation π : U → U is said to have an expansion of γ if for
any subset S of at most N/[12K5] groups and any subset W of nodes with exactly three
nodes in each group in S it holds that π (W) contains nodes from at least γ |S| many
groups from π (U ).

In other words, a permutation π with expansion γ on a set U guarantees that the
number of blocked k-blocks in π (U ) decreases by a factor of at least γ in comparison to
the number of k-blocks in U . See Figure 7 for a visualization.

One can show that for sufficiently large N, there always exists a permutation on U
with expansion at least 5/4.

LEMMA 3.4. Define U as in Definition 3.3. For any N and K with N ≥ 12K5, there is
a permutation on U with expansion at least (1 + δ) for a constant δ ≥ 1/4.

PROOF. Let the permutation π be chosen uniformly at random from all permutations
on U . Let p(s) be the probability that there exists a set S of groups with |S| = s and
a set of triples W from these groups such that π (W) contains at most (1 + δ)|S| many
groups. We will show that p(s) < 1, which proves the lemma. p(s) can be upper bounded
by

p(s) ≤
(

N/K
s

)(
K
3

)s( N/K
(1 + δ)s

) (
(1 + δ)s

N/K

)3s

, (2)
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Fig. 8. Visualization of the underlying topology used in the Enhanced IRIS system, where � denotes the
first level with k� ≥ 12(log k)5.

where
(N/K

s

)
is the number of possibilities for choosing s groups,

(K
3

)s
is the number of

possibilities of choosing a triple in each of the selected groups,
( N/K

(1+δ)s

)
is the number of

possibilities for choosing (1 + δ)s groups that the triples have to map to, and
(

(1+δ)s
N/K

)3s

is an upper bound on the probability that all of the triples are indeed mapped to the
(1 + δ) groups. When choosing s = γ N/K, Equation (2) is at most(

e
γ

)s (
K3

6

)s (
e

(1 + δ)γ

)(1+δ)s

((1 + δ)γ )3s =
(

e2+δ(1 + δ)2−δ

6

)s

(K4γ )(1−δ)s.

When choosing δ = 1/4 and γ ≤ 1/(12K4), the first term is at most 4(1−δ)s and the
second term is at most (1/12)(1−δ)s, so altogether, p(s) ≤ (1/3)(1−δ)s. When summing up
over all s ≥ 1, this gives an overall probability of less than 0.8 that the expansion of π
is at most (1 + δ), which completes the proof.

3.2. Encoding

Similarly to the encoding in Basic IRIS, we introduce an underlying topology consisting
of logk n levels each containing n nodes. The description of this topology is divided into
three parts depending on �.

Part 1. k� < 12(log k)5

Part 2. k� ≥ 12(log k)5 and � < 6
Part 3. k� ≥ 12(log k)5 and � ≥ 6

Figure 8 provides a high-level overview of the encoding of the different levels.

Part 1. For the encoding of the data for all levels � with k� < 12(log k)5, we just use
the encoding via k-ary �-dimensional subbutterflies as in Basic IRIS. Since for these
levels k� is a constant, these levels can tolerate a constant fraction of blocked nodes in
each subbutterfly while still being able to decode all data.

In case of k� ≥ (12 log k)5 (Part 1 and Part 2), we introduce n/k� graphs for each level
�, denoted as G(�), which are divided into further sublevels, each consisting of k� nodes.
We encode the data items within each G(�) by using edge sets between the sublevels
with certain expansion properties (defined later). In particular, for each level �, we do
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not proceed with the encoding of the resulting data items from the last (sub)level of
the graphs from level �− 1 but we restart the encoding in level � with the original data
items.

This level-based encoding approach allows us to define the decoding depth of En-
hanced IRIS analogously to the decoding depth of Basic IRIS.

Definition 3.5 (Decoding Depth). The decoding depth of a node u at a sublevel i of
G(�) is now defined as follows:

dd(u) =

⎧⎪⎨
⎪⎩

0 if u is not blocked
∞ if i = L and u is blocked
max
v∈C(u)

{dd(v)} + 1 if i < L and u is blocked,

where C(u) denotes the neighbors of the K-block of u in level i + 1 excluding any two
nodes of the biggest decoding depth among these neighbors. Analogously to the Basic
IRIS system, the decoding depth of a server si is defined as dd(si) = (d(0, i)).

Note that if the decoding depth of a node u at sublevel i in G(�) is more than d with
i + d ≤ L, then it must be possible to embed a complete ternary tree of blocked nodes
with root u and depth d in G(�).

Part 2. Now, suppose that � satisfies k� ≥ 12(log k)5 and � < 6. In order to describe
the encoding of the data items on such a level � for each consecutive k� nodes on level
�, we introduce a graph G(�) that consists of L1 = 20 log k sublevels, each consisting
of k� virtual nodes. In order to construct G(�), choose a permutation (π1)� that has an
expansion of at least 5/4 for N = k� and K1 = log k. In the following, let (i, x) denote the
virtual node from sublevel i and column x in G(�). Partition the nodes of each sublevel
of G(�) into groups of K consecutive nodes. Each node (i, x) in some group B in sublevel
i of G(�) is connected to all nodes (i + 1, π�(y)) with (i, y) ∈ B. This establishes complete
bipartite graphs of K1 nodes on sublevel i and i + 1, called K1-blocks (see Figure 9).
G(�) is simulated by N servers with server si simulating the L1 nodes (0, i), (1, π�(i)),
(1, π�(π�(i))), and so on.

We are now ready to describe the encoding of a set of K data items d0, . . . , dK−1.
Initially, dj is placed in node (0, j) of G(�), for all j ∈ {0, . . . , K − 1}. Given that in
sublevel i, i ∈ {0, . . . , L − 1}, we have already assigned data items d(i, j) to the nodes
(i, j), j ∈ {0, . . . , K − 1}, we compute, for each K-block B of sublevel i, the data items
for sublevel i + 1 using the EVENODD coding strategy and assign them to the nodes
of that K-block in sublevel i + 1.

In the following, our goal is to extend G(�) by adding more sublevels to it such that
whenever a data item encoded in G(�) cannot be recovered, then at least a constant
fraction of the server emulating G(�) must be blocked.

Suppose the data of a node (0, x) in G(�) cannot be recovered; that is, the decoding
depth of (0, x) is larger then L1. Hence, G(�) contains a ternary tree with root (0, x)
and depth L1 that only consists of blocked nodes. Unfortunately, the leaves of this tree
are not guaranteed to be distinct any more as they are for the binary witness trees
in the k-ary butterfly. But due to the expansion property of π�, we know that this
ternary tree must cover at least 3(5/4)L−1 blocked servers at its leaves. Thus, at least
min{3(5/4)L1−1, N/(12(K1)5)} ≥ N/(12(K1)5) blocked servers are covered by the nodes
at sublevel L in G(�), since L1 = 20 log k ≥ 4� log k and (5/4)4� log k ≥ k�. That is, at least
a 1/(12(K1)5)-fraction of the N servers simulating G(�) is blocked. Now consider the
following two cases:

Case 1. (K1)� ≤ 12(log K1)5. In this case, K1 is a constant and therefore a constant
fraction of the servers simulating G(�) is blocked.
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Fig. 9. Visualization of G(�) and its K1-blocks with x ≤ log∗ k.

Case 2. (K1)� > 12(log K1)5. Define K2 = log K1 = log log k, L2 = 20 log K1 and add
L2 additional sublevels to G(�) using a permutation (π2)� with expansion 5/4 for
N and K2. With the same arguments from earlier, the number of blocked servers
that are now covered by the nodes at sublevel L1 + L2 in G(�) increases to at least
N/(12(K2)5). Again, we need to consider two cases: If (K2)� ≤ 12(log K2)5, then,
analogously to case 1, K2 is a constant implying that a constant fraction of the
servers emulating the G(�) is blocked.

If (K2)� > 12(log K2)5, we continue with the extension of G(�) as for K. That is,
define K3 = log K2, L3 = 20 log K2 and add L3 additional sublevels to G(�) by using
a permutation (π3)� with expansion 5/4 for N and K3.
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We continue with the process of extending G(�) until after at most log∗ k exten-
sions,2 Ki is a constant, implying that a constant fraction of the servers emulating
G(�) is blocked whenever the data of some node (0, x) in G(�) cannot be recovered.

Part 3. It remains to describe the encoding of the data items on level � with k� ≥
12(log k)5 and � ≥ 6. Similarly to the construction in part 2, we first choose a graph G(�)
using a permutation π� with N = k�, K = k, and L = 4 log N levels to get the number of
blocked servers in G(�) up to N/(12K5). Then, we continue with the log∗-construction
as in part 2 (starting with K = log k and L = 20 log k), until we get the number of
blocked servers up to a constant fraction before the decoding of a data item can fail.

Lemma 3.6 provides an upper bound for the overall redundancy of the Enhanced
IRIS system.

LEMMA 3.6. The overall redundancy in the Enhanced IRIS system is O(log n).

PROOF. In the following, let z denote the size of the original data items. First, we upper
bound the amount of information a nonblocked server s stores for the encoding of one
G(�). Let S1(i), i ∈ {0, . . . , L1 − 1} denote the amount of information server s has stored
during the encoding of the first L1 sublevels of G(�) up to sublevel i. By Lemma 3.2, it
holds that S(i) ≤ S(i − 1)(1 + 2/(k − 2)). Since S(0) = z, we get S(i) ≤ z(1 + 2/(k − 2))i.
Hence, the amount of data S(L1 −1) the server s stores after the encoding of the first L1
sublevels of G(�) is upper bounded by z(1+2/(k−2))L1−1 = O(z). By the same arguments,
the amount of data the server s stores after the encoding of the first

∑x
i=1 Li sublevels

of G(�) is upper bounded by �x
i=1z(1 + 2/(k− 2))Li−1. Since there are at most log∗ k level

extensions in G(�), the overall amount of data the server s stores after the encoding of
one complete G(�) graph is upper bounded by �

log∗ k
i=1 z(1 + 2/(k − 2))(Li−1) = z · 2O(log∗ k).

Hence, for all logk n graphs G(�), the server overall amount of data stored at s after the
complete encoding of the underlying topology used in Enhanced IRIS is upper bounded
by z logk n · 2O(log∗ k) = O(z log n). This implies an overall redundancy of O(log n) at each
server.

3.3. The Lookup Protocol

Recall that the lookup protocol of Basic IRIS consists of three stages: the preprocessing
stage, the probing stage, and the decoding stage. In the following, we describe how to
adapt these stages in order to work for the Enhanced IRIS system.

3.3.1. Preprocessing Stage. Just like in the Basic IRIS system, we first recover the k-
ary butterfly, such that at the end each nonblocked server knows the representative of
each blocked server it is connected to in the k-ary butterfly. Next, the G(�) graphs need
to be recovered. That is, each nonblocked server needs to know the representative of
each blocked server it is connected to in any Ki-block of a G(�) graph. Since there is
now a deterministic calculation rule for the Ki-blocks in the G(�) graphs, each server
additionally needs to store all permutations (πi)�. Recall that in total we only have
O(log∗ n) permutations, implying that each server additionally needs to store an amount
of O(n log∗ n) data. But this does not cause a problem, since in any case each server
additionally stores information about each other server in the system (e.g., addresses
of the servers). In order to recover the G(�) graphs, each nonblocked server s sends a
message to each server s′ it is connected to in any of the G(�) graphs by routing the
message (id(s), id(s′)) along the unique path in the k-ary butterfly from s to s′. Since the
k-ary butterfly has already been recovered correctly, eventually this message reaches
the server s′ in case s′ is not blocked and otherwise the representative rep(s′) of s′. This

2log∗(n) is the number of times the logarithm has to be applied to n until the result is at most 2.
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initiates s′ (or rep(s′)) to forward the message (id(s′), ID) back to s along the unique
path from s′ to s in the k-ary butterfly, where ID = id(s′) in case s′ is not blocked and
ID = id(rep(s′)) otherwise. Since all nonblocked servers forward their messages in the k-
ary butterfly, by the Borodin Hopcraft bound [Borodin and Hopcroft 1982], a congestion
of �(

√
n/k) may occur at a nonblocked server. Using the analysis of Valiant’s trick

[Valiant 1982], one can show that there exist permutations with the desired expansion
properties (as defined earlier) that additionally guarantee a congestion of at most
O(log n) at each node in each round of the routing strategy described earlier. Hence, at
the end of the preprocessing stage, each nonblocked server knows the representatives
of all blocked servers it is connected to in the k-ary butterfly and in all G(�) graphs.

Once the underlying topology has been recovered, the decoding depth of the nodes in
G(�), as defined in Definition 3.5, can be computed analogously to the decoding depth
in Basic IRIS. Besides the decoding depth of a node at the levels in G(�), each node
from each G(�) also needs to compute the decoding depth of G(�), which is analogously
defined to the decoding depth of a subbutterfly in Basic IRIS. That is, dd(G(�)) =
max{dd(u) | u is a node on level 0 in G(�)}. Since the k-ary butterfly has already been
recovered, we can use a bottom-up routing in the k-ary butterfly consisting of the
servers that emulate the nodes in G(�) in order to determine the maximum decoding
depth of a node from G(�). To be more precise, let s1, . . . , sk� denote the servers that
emulate G(�). In the first round, each server si forwards the decoding depth of the node
it emulates on the last level in G(�) to all servers it is connected to on level logk n− 1 of
the k-ary butterfly. In round r ∈ {2, . . . , logk n}, each server si forwards the maximum
of the decoding depths it has received at the beginning of this round and the decoding
depth of the node it emulates on level logk n− r + 1 in G(�) to all servers it is connected
to on level logk n − r of the k-ary butterfly.

Hence, after logk n, rounds each server that emulates a node from G(�) is aware of
dd(G(�)).

The following lemma (Lemma 3.7) is easy to check.

LEMMA 3.7. The preprocessing stage takes at most O(log n) communication rounds
with at most O(log2 n) congestion at every nonblocked server at each round. Furthermore,
at the end of the preprocessing stage, the following holds:

(1) Each nonblocked server knows the representatives of all blocked servers it is con-
nected to in the k-ary butterfly and the ones it is connected to in any of the G(�)
graphs.

(2) Each nonblocked server that emulates a node from G(�) knows dd(G(�)).

3.3.2. Probing Stage. The purpose of the probing stage is to determine for each lookup
request the level � ∈ {0, . . . , logk n} it “belongs to” (as defined later). Analogously to the
Basic IRIS system, the probing stage consists of logk n rounds. First, each nonblocked
server that received a lookup request for some data item d chooses c nonblocked servers
s1(d), . . . , sc(d) just like in the probing stage of the Basic IRIS system. The following
rounds are dedicated to forward for each i ∈ {1, . . . , c} a (d, i) probe along the unique
path in the k-ary butterfly from the node on level logk n that is emulated by si(d) to
the node on level 0 that is emulated by the server responsible for hi(d). In each round
r ∈ {0, . . . , logk n}, each node u that received a probe message determines whether it is
congested or blocked. Analogously to the Basic IRIS system, a node u that received probe
messages is denoted as congested if it receives more than α log n probes for different
(d, i) pairs (for a sufficiently large constant α) in the current round. Different from the
Basic IRIS system in the Enhanced IRIS system, we denote u as blocked at level r if
dd(G(u)) = ∞, where G(u) denotes the graph G(logk n−r) that is (besides other servers)
emulated by the server that emulates u. If u is congested or blocked, u deactivates all
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(d, i)-probes it received in the current round by sending the message (fail, d, i, logk n−r)
to all roots of these probes (by using the technique of splitting if necessary). Otherwise,
u forwards each probe to the next nodes of the according paths on level logk n−r −1 (by
using technique combining if necessary). After at most O(logk n) rounds, each server s
that received a lookup request for some data item d receives a fail-message from all of its
probes that have been deactivated. Using this information, s defines its lookup request
to belong to the minimum level such that less than c/2 of its probes are deactivated
at that level. Hence, at the end of the probing stage, each lookup request belongs to a
level � ∈ {0, 1 . . . , logk n}. All lookup requests that belong to level 0 can immediately be
answered, while all lookup requests belonging to a level � > 0 will be handled in phase
� of the decoding stage.

It is easy to see that the probing stage of the Enhanced IRIS system satisfies the
following property.

LEMMA 3.8. The probing stage of the Enhanced IRIS system takes at most O(logk n)
communication rounds with at most O(log2 n) congestion in every node at each round,
w.h.p.

Analogously to the Basic IRIS system (Lemma 2.13), one can show the following
lemma.

LEMMA 3.9. If the adversary can block at most εn servers for a sufficiently small
constant ε > 0, then for every � ∈ {1, . . . , logk n}, the number of data items with requests
belonging to level � is at most γ n/k�, for a sufficiently small constant γ .

3.3.3. Decoding Stage. Analogously to the Basic IRIS system, the decoding stage is
divided into logk n phases, where phase � ∈ {0, . . . , logk n} is dedicated to the decoding
of the data items of lookup requests that belong to level �. In phase � ∈ {0, . . . , logk n},
each server s that received a lookup request for some data item d that belongs to level
� performs or initiates the following tasks:

(1) Choose c/2 pairs (d, i) that have not been deactivated in the probing stage for level
�. For i ∈ {1 . . . , c}, let Gi(�) denote the graph from level � that is (besides other
servers) emulated by the server responsible for hi(d).

(2) For each of the c/2 previously chosen (d, i) pairs, determine whether Gi(�) could
be decoded without nodes from Gi(�) becoming congested, that is, receiving more
than O(ck) decode requests for different (d, i) pairs. If any node from Gi(�) would
become congested when decoding Gi(�), we denote Gi(�) as congested. For a graph
Gi(�), let BF(Gi(�)) denote the k-ary butterfly that consists of the same servers as
Gi(�). Determining whether Gi(�) is congested can be done just as in determining
whether the k-ary subbutterfly BF(Gi(�)) is congested, as already described in the
Basic IRIS system, by spreading a decode-message through BF(Gi(�)).

(3) If less than c/4 of the Gi(�) graphs are congested, initiate the decoding of c/4 of the
noncongested Gi(�) graphs. Since the decoding depth of each Gi(�) graph considered
in level � of the decoding stage is not exceeded, it is possible to completely decode
Gi(�) and retrieve the requested data pieces.

If at the end of phase � server s receives at least c/4 decoded pieces, then s can recover
the requested data item. Otherwise, s denotes the request to belong to level � + 1 and
handles it again in the next phase, phase � + 1.

It is easy to see that the probing stage of the Enhanced IRIS system satisfies the
following property.
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LEMMA 3.10. The probing stage of the Enhanced IRIS system takes at most O(log3
k n)

communication rounds with at most O(log3 n) congestion in every node at each round,
w.h.p.

Analogously to the Basic IRIS system (Lemma 3.11), one can show the following
lemma.

LEMMA 3.11. For every phase r of the decoding stage of the Enhanced IRIS system, the
number of data items with requests belonging to level r is at most ϕn/kr with ϕ = �(k).

Lemma 3.11 implies that all remaining data items can be decoded at the end.
Hence, the following theorem holds.

THEOREM 3.12. If the adversary blocks less than εn many servers, with ε being a
sufficiently small constant, then using an overall redundancy of O(log n), any set of
lookup requests (one per nonblocked server) is served correctly after at most O(log3 n)
communication rounds with a congestion of at most O(log3 n) at every node in each
round, w.h.p.

Theorem 2.18 and Theorem 3.12 now imply our our main theorem, Theorem 1.1,
stated in Section 1.3.

4. CONCLUSION AND FUTURE WORK

We presented the first scalable distributed information system that is provably robust
against DoS attacks by a current insider that can shut down any ε-fraction of servers.
An interesting challenge in this field of research is to enhance our system so that
even write requests can be handled efficiently and correctly under a DoS attack (as
was shown for a past insider in Baumgart et al. [2009]). Furthermore, notice that we
did not try to optimize constants; from a practical perspective, it would certainly be
interesting how small (large, respectively) they can be made.

APPENDIX

A. BUTTERFLY COMPLETION STAGE IN DETAIL

The goal of the butterfly completion stage is to make sure that for any DoS attack the
servers are reorganized such that we again have a complete k-ary butterfly but only
over the nonblocked servers.

The butterfly completion stage is divided into four phases, which are described in the
following. For the rest of this section, we assume that the adversary blocks εn servers.

Phase 1 (Build tree over nonblocked servers). In order to build a tree of
depth O(log n/ log log n), we first build a graph of degree O(log n) and diameter
O(log n/ log log n) (w.h.p.) consisting of all nonblocked servers. Afterward, this graph
is transformed into a tree of depth O(log n/ log log n) using the technique of a breadth-
first search. Recall that c = O(log m) and m ≥ n.

The graph is constructed as follows: First, each nonblocked server s chooses c other
servers s1, . . . , sc uniformly at random. Afterward, each nonblocked server s creates an
edge to all nonblocked servers s′ ∈ {s1, . . . , sc} and informs s′ about that such that s′
also creates an edge to s. With Chernoff bounds [Chernoff 1952], the following lemma
is easy to prove.

LEMMA A.1. After O(1) rounds, the nonblocked servers have built a graph with degree
O(log n) and diameter O(log n/ log log n), w.h.p.
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In order to transform the constructed graph G consisting only of nonblocked servers
into a tree of depth O(log n/ log log n), each nonblocked server initiates a breadth-first
search (BFS). The idea is to let the servers create a tree that is rooted at the nonblocked
server with minimum ID among all nonblocked servers. Since the nonblocked servers
cannot determine this ID in advance in at most polylogarithmic time, each nonblocked
server initiates a BFS. In the following, each nonblocked server s holds three variables
minDist(s), minDistSource(s), and parent(s) that are initialized with 0, ID(s), and NIL,
respectively. minDistSource(s) will hold the minimum server ID from which s has re-
ceived a message so far. minDist(s) will hold the minimum distance to minDistSource(s)
that server s has stored so far. parent(s) will hold the server ID from which it has re-
ceived the last message that initiated an update of minDistSource(s). In the first round,
each nonblocked server s sends the message (id(s), minDist(s), minDistSource(s)) to each
of its neighbors in G. Algorithm 1 describes the actions performed by each nonblocked
server s in each of the following rounds as soon as s has received all messages from its
neighbors.

ALGORITHM 1: GRAPHTOTREE

foreach message (id, minDist, minDistSource) received at the beginning of this round do
if minDistSource < minDistSource(s) or minDistSource = minDistSource(s) and
minDist < minDist(s) then

� update internal variables;
minDistSource(s) ← minDistSource;
minDist(s) ← minDist + 1;
parent(s) ← id;

end
end
foreach neighbor s′ of s in G do

send message (id(s), minDistSource(s), minDist(s)) to s′

end

Together with Lemma A.1 and for ε < 2logk n/24n < 1/2 it follows:

LEMMA A.2. After O(log n/ log log n) rounds, the following holds, w.h.p.:

(1) The parent(s)-values induce a tree T of depth O(log n/ log log n) over all (1 − ε)n
nonblocked servers rooted at the nonblocked server with the minimum identifier.

(2) The degree of each node in T is at most O(log n).

Phase 2 (Transform list to tree). Next we show how to transform T into a doubly
linked list L of n nonblocked servers in which each nonblocked server is contained at
most twice. First, using a bottom-up approach, each nonblocked server s determines
for each of its children s′ in T the size size(s′) of the subtree of T rooted at s′ and
the identifier of the rightmost server rightmost(s′) in this subtree and reports it to its
parent server. It is easy to show that this is possible in O(depth(T )) rounds. With this
information, in a top-down approach, each nonblocked server then determines its posi-
tion and its neighbors in a doubly linked list of n nonblocked servers as follows: First,
the root r of T (i.e., the server r with p(r) = NULL) initiates a preorder walk of T
by performing Algorithm 2 with parameters 1, NULL. Whenever a server receives a
message, it also performs Algorithm 2. Clearly, after at most depth(T ) rounds, each
nonblocked server knows its position and its left neighbor in L (see Figure 10 for a
visualization). In order to transform L into a doubly linked list, each nonblocked server
s sends its ID to its left neighbor and sets right(s) to the ID it receives, or to NULL if it
does not receive a message. In parallel to the transformation of T into a doubly linked
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Fig. 10. Transformation of T into a sorted list of n nonblocked servers. The numbers next to the tree nodes
denote the order of their appearance in the tree traversal.

list of the (1 − ε)n nonblocked servers, r initiates an additional preorder traversal of T
by additionally performing Algorithm 2 with parameters (1 − ε)n + 1, rightmost(r). In
contrast to the first traversal of T , the values left(s) and pos(s) in Algorithm 2 are now
substituted by left2(s) and pos2(s). Also, we use the modification that as soon as a non-
blocked server sets its pos2 value to n, the algorithm terminates. Then, analogously
to the right values, each server sets its right2 value. By this additional tree traver-
sal, the first εn servers of the traversal are appended to L. Notice that this preorder
traversal of T guarantees that the first εn servers visited form a connected subtree
of T .

ALGORITHM 2: BUILDLISTFROMTREE(x, l)
left(s) ← l, pos(s) ← x;
foreach child childi(s) of s, i ∈ {1, . . . , c} do

if i = 1 then
� childi(s) is the left most child of s;
left ← childi(s);

else
left ← rightmost(childi−1(s));

end
pos ← pos(s) + 1 + ∑i−1

j=1 size(child j(s));
Send message (pos, left) to childi(s);

end

The following lemma can easily be shown.

LEMMA A.3. After 2 · depth(T ) rounds, T is transformed into a doubly linked list L of
size n over the (1 − ε)n nonblocked servers such that each nonblocked server is contained
at most twice in L.
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Phase 3 (Rearrange list). The goal of this phase is to rearrange L into a doubly linked
list with the properties specified in Lemma A.4.

LEMMA A.4. After O(1) rounds, the following holds:

(i) Each nonblocked server si is at position i in L.
(ii) For each blocked server sj , the server s′ with pos(s′) = j or pos2(s′) = j is the unique

representative of sj .

Initially, the owner of a position j in L is the server s′ with pos(s′) = j or pos2(s′) = j.
First, each nonblocked server s′ at position j contacts server sj . If sj is not blocked,

then s′ considers sj as the new owner of j. s′ then asks its direct neighbors in L for the
owners of the positions j − 1 and j + 1 and forwards that information to sj , so that sj
can take over the position j in L.

If sj is blocked, s′ remains to be the owner of j and therefore becomes the represen-
tative of sj .

Phase 4 (Build extended k-ary butterfly). In this phase, L is transformed into a k-ary
butterfly using an extended k-ary butterfly.

Definition A.5 (Extended k-Ary Butterfly). For any d, k ∈ N, the d-dimensional ex-
tended k-ary butterfly EBF(k, d) is a graph (V, E) with V = ⋃d

�=0 V� and E = ⋃d
�=1 E�,

where

V� = {(�, i) | i ∈ {1, . . . , n}} and

E� = {{(� − 1, i), (�, j)} ∈ V�−1 × V� | ∃c ∈ {1, . . . , k − 1} : |i − j| = c · k�−1}.
Furthermore, we define G(�) = (V�−1 ∪ V�, E�), � ∈ {1, . . . , d} and denote a node (�, i) as
a level � node.

Recall that in the k-ary butterfly, the nodes from level �−1 and �, � ∈ {1, . . . , logk n} form
n/k disjoint complete k-bipartite subgraphs. In contrast to this, in the extended k-ary
butterfly, the nodes from level � − 1 and � form n − k complete k-bipartite subgraphs
that contain the n/k subgraphs from the standard k-ary butterfly.

The idea of this phase is to add for each nonblocked server at position i in L exactly
logk n + 1 virtual nodes (0, i), . . . , (logk n, i) and to successively build the graphs G(�),
� = 1, . . . , logk n, beginning with G(1).

In G(1), each node from level 0 needs to connect to all nodes on level 1 that are
at distance at most k − 1. For this, in the first round, each nonblocked server s
asks its two direct neighbors in L for their neighbors in L, which introduces s to its
neighbors at distance 2 in L. In round r ∈ {2, . . . , �log(k − 1)�}, each nonblocked server
s asks its two neighbors at distance 2r−1 for their neighbors (at distances 1, 2, . . . , 2r−1)
in L. This introduces s to all servers at distance at most 2 · 2r−1 = 2r in L. Hence,
after �log(k− 1)� rounds, each nonblocked server knows all servers at distance at most
2�log(k−1)� = k − 1 in L.

The construction of G(�), � = 2, . . . , logk n proceeds in �log(k − 1)� + 1 rounds and
assumes that G(� − 1) has already been built. That is, each nonblocked server knows
all servers at distance c · k�−2, c ∈ {1, . . . , k− 1}. In order to build G(�), each nonblocked
server needs to be introduced to all servers at distance c · k�−1, c ∈ {1, . . . , k− 1}. In the
first round, each nonblocked server s asks all servers at distance (k − 1)k�−2 (i.e., the
servers farthest away) for their closest neighbors in G(� − 1) (i.e., their neighbors at
distance k�−2). By this, s is introduced to all servers at distance (k−1)k�−2 + k�−2 = k�−1.
In round r ∈ {2, . . . , �log(k − 1)� + 1}, each nonblocked server s asks all servers at
distance 2r−2 ·k�−1 for their neighbors (at distances c ·k�−1, c ∈ {1, . . . , k−1}) in G(�). See
Figure 11 for a visualization. This introduces each nonblocked server to the servers at
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Fig. 11. Visualization of the construction of G(�) in round r in which the nonblocked server s asks the server
s′ at distance 2r−2k� for its neighbors. The dashed edge denotes a connection with maximum distance that s
builds in round r.

distance (2r−2+c)·k�−1, c ∈ {1, 2, . . . , 2r−2}. Hence, after �log(k−1)�+1, each nonblocked
server is introduced to all servers at distance c · k�−1, c ∈ {1, . . . , (k − 1)}.

LEMMA A.6. In the fourth phase of the butterfly completion stage, a sorted list of
n nonblocked servers is correctly transformed into an extended k-ary butterfly in time
(2 + o(1)) log n and at any time the congestion at every nonblocked server is at most
O(log n).

PROOF. By induction on �, it is easy to show that G(�), � ∈ {1, . . . , logk n} is built
correctly. Since the construction of each G(�) takes 2(�log k� + 1) rounds (each round
described previously actually consists of two rounds), the extended k-ary butterfly
is built after 2(�log k� + 1) logk n rounds. By Lemma A.3, each nonblocked server is
contained at most twice in L, implying that in each round each nonblocked server
contacts (and is contacted by) at most four nonblocked servers and asks for their
neighbors in G(� − 1) and G(�), respectively. Since each nonblocked server has at most
O(k) neighbors in G(�−1) and G(�), the congestion of each nonblocked server is at most
O(k) in each round.

Since the d-dimensional k-ary butterfly is a subgraph of the d-dimensional extended
k-ary butterfly, Lemma 2.6 follows.
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