Sie haben Javascript deaktiviert!
Sie haben versucht eine Funktion zu nutzen, die nur mit Javascript möglich ist. Um sämtliche Funktionalitäten unserer Internetseite zu nutzen, aktivieren Sie bitte Javascript in Ihrem Browser.

Show image information

CustoNN2: Customizing Neural Networks on FPGAs

TermWS 2018/19 + SS 2019
ProgramComputer Science Master's
Computer Engineering Master's
Lecture numberL.079.07022
StatusProject started 11 October 2018
Regular Meeting HoursTuesday 9:15-11:45
Wednesday 14:15-15:45

Goals and Contents

Neural networks are the key enablers of several technology breakthroughs in recent years, for example in the fields of speech recognition, image classification, autonomous driving and mastering the board game Go. These achievements go along with a huge demand for computing power, currently often delivered by GPUs. With recent research progress on neural networks with small fixed-point or even binary weights, FPGAs are becoming an interesting alternative. In the first incarnation of this project, a configurable inference architecture with all weights in local memory was designed and evaluated on two different FPGA platforms. The new, second project will focus on scaling to bigger and more FPGAs, working with weights from off-chip memory, and deeper customization of the designs.

In this project group, you will

  • Research current literature on learning strategies and architectures for neural networks with fixed-point or binary weights.
  • Propose and implement a neural network inference architecture on FPGA that makes efficient use of low-precision weights.
  • Use modern OpenCL-based programming tools to target 32 state-of-the-art Stratix 10 FPGAs that will be installed in the Noctua cluster.
  • Come up with performance and resource models and match them to hardware measurements and profiling results.
  • Explore strategies and technology to scale individual inference problems over multiple devices.


The University for the Information Society